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An Indo-Pacific coral spawning 
database
Andrew H. Baird et al.#

The discovery of multi-species synchronous spawning of scleractinian corals on the Great 
Barrier Reef in the 1980s stimulated an extraordinary effort to document spawning times 
in other parts of the globe. Unfortunately, most of these data remain unpublished which 
limits our understanding of regional and global reproductive patterns. The Coral Spawning 
Database (CSD) collates much of these disparate data into a single place. The CSD includes 
6178 observations (3085 of which were unpublished) of the time or day of spawning for over 
300 scleractinian species in 61 genera from 101 sites in the Indo-Pacific. The goal of the CSD 
is to provide open access to coral spawning data to accelerate our understanding of coral 
reproductive biology and to provide a baseline against which to evaluate any future changes 
in reproductive phenology.

Background & Summary
Scleractinian corals are the ecosystem engineers of coral reefs, the most species-rich marine ecosystems. 
Scleractinian corals have a bipartite life history, with a sessile adult stage and a planktonic larval stage that allows 
dispersal among reefs. Corals produce larvae in one of two ways: gametes are broadcast-spawned for external 
fertilization or the eggs are retained for internal fertilization, followed by the release of planula larvae from the 
polyp. The discovery of multi-species synchronous spawning on the Great Barrier Reef1 stimulated a large effort 
to document coral spawning times in other regions of the world. Similar multi-species spawning events sensu2 
have now been documented in over 25 locations throughout the Indo-Pacific3–5. However, much additional data 
on coral sexual reproductive patterns remain unpublished. Even when spawning data are published, there is 
often insufficient detail, such as the precise time and duration of spawning, to address many important questions. 
Consequently, predicting the month of spawning has been the focus of many studies to date6.

Coral spawning times can be used to address many significant and fundamental questions in coral reef ecol-
ogy. Most coral species are notoriously difficult to identify and spawning times have been used to infer pre-zygotic 
barriers to fertilization and thus assist decisions about species boundaries7,8. While proximate cues associated 
with the month of spawning are reasonably well understood in some taxa6,9, the relationship between cues for 
the date and time of spawning are poorly understood. Similarly, potential phylogenetic patterns and geographical 
variation in spawning times are only beginning to be explored10. Knowing when corals spawn is also important 
for managing coastal development. For example, in Western Australia, legislation requires dredging operations 
to cease during mass spawning events11,12. Coral spawning is also an economic boon for tourist operators in 
many parts of the world, such as the Great Barrier Reef. Furthermore, population level records of spawning times 
provide a baseline against which to evaluate potential changes in spawning synchrony or seasonality associated 
with anthropogenic disruptions to environmental cues, in particular, sea surface temperature13. Knowledge of 
the timing of spawning is also essential for accurately estimating levels of connectivity among populations, given 
season differences in current flow14. The value of long-term species level data on coral spawning has recently been 
demonstrated in a test of the influence of temperature and wind on the night of coral spawning15.

In this data descriptor, we present the Coral Spawning Database (CSD). The CSD includes spawning obser-
vations for reef building coral species from the Indo-Pacific. The CSD includes 6178 observations (3085 of which 
were unpublished) of the time or day of spawning for 300+ scleractinian species in 61 genera (Online-only 
Table 1) from 101 sites (Fig. 1) in the Indo-Pacific. The goals of the CSD are: (i) to assemble the scattered and 
mostly unpublished observations of scleractinian coral spawning times and (ii) to make these data readily availa-
ble to the research community. Our vision is to help advance many aspects of coral reef science and conservation 
at a time of unprecedented environmental and societal change.

#A list of authors and their affiliations appears at the end of the paper. 
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Methods
The CSD includes spawning times for broadcast spawning scleractinian coral species in the Indo-Pacific. There 
are two sources for these data: the literature and unpublished observations. Published literature was selected 
based on the authors’ knowledge of the subject area and a literature search using the terms “coral AND spawn*”. 
Over 50 researchers known by the authors to have extensive data on coral spawning times were approached to 
contribute unpublished data. This initial invitation led to a subsequent round of invitations to additional contrib-
utors. Of course, we encourage any researchers with data we have missed to contribute their observations in the 
annual update of the database. The database focusses on spawning times. Many other biological variables related 
to coral reproduction, such as fecundity, are available in the Coral Traits Database16.

The database is available as a Microsoft Access relational database or an Excel spreadsheet. To minimise 
repetition in data entry, spawning observation information is entered in three primary tables (Fig. 2). The first 
(“tblSitesForSpawningObservations”) is used to enter geographic information on each study site; the second 

Spawning records
10       50       200        400

Fig. 1 The number of spawning records by site.

Fig. 2 Arrangement of data tables in the Access relational database.
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(“tblSpawningObervations”) contains details of the spawning activity recorded at each site; the third (“tblRefer-
encesForSpawningObervations”) contains either full bibliographic details for published studies or details of the 
source of unpublished data. To assist with data analysis, three accessory tables are also linked. The first (“tblEcore-
gionsVeron2015”) allows sites to be grouped into the biogeographical Ecoregions proposed by17 or by broader 
region (e.g. Indian Ocean, Western and Central Pacific, Eastern Pacific). The remaining two tables allow the coral 
species to be grouped systematically for analysis. The first (“tblCoralSpecies”) has a list of over 1600 coral species 
with genus and species names (primarily from18 or subsequent descriptions of new species) mapped to currently 
accepted names (primarily from19) where the taxonomy has changed. The second (“tblSystematics”) allows spe-
cies to be grouped into major clades or currently accepted families19 as revealed by molecular studies20–22.

Data entry. Coral Spawning Database fields. 

 1) Site information (in tblSitesForSpawningObservations):
Ecoregion_ID link to Ecoregions (150) as defined by17

Country            the country, territory (e.g. Guam) or island group (e.g. Hawaiian Islands) where spawning 
observation was made
Site                      accepted name for broad geographical location (e.g. archipelago, island, offshore reef, bay, etc.) 
of the observation
Subsite               more precise site name within location (where applicable; na entered where no subsite)
Latitude             in decimal degrees (-ve values for sites South of the Equator).
Longitude          in decimal degrees (-ve values for sites West of the Greenwich Meridian).

 2) Spawning observations (in tblSpawningObservations):
Depth_m              the approximate depth at which the colony was collected (for ex situ observations) or observed 

(for in situ observations). If not recorded then −99 entered.
Genus                currently accepted genus name19

O_n                     open nomenclature qualifier: see explanation below under “Species identifications”.
Species               the species name used by the observer
Date                   date of spawning observation in the format day/month/year (e.g. 24/11/1983)
N                             number of colonies or individuals observed spawning. Used −99 if not known. If exact number 

of colonies not counted but more than a specific number were observed to spawn (e.g. > 25), then 
minimum number counted was entered (e.g. 25).

Start_time          time of first observation of spawning for colony(ies) of species: time (hh:mm) on a 24 hour clock 
e.g. 18:30. See “recording the time of spawning” below for ways to use the time fields to capture 
the various ways spawning is usually observed. No threshold applied to the intensity of spawning.

No_start                 no information on time that spawning started: True or False.
Quality_start   if No_start is False, Exact or Approx.
End_time           time of last observation of spawning for colony(ies) of species (if later than start time, normally): 

time (hh:mm) on a 24 h clock e.g. 18:30
No_end             no information on time that spawning ended: True or False
Quality_end    if No_end is False, Exact or Approx
Gamete_release (five character states as follows)

•	 Bundles – eggs and sperm released together packaged in bundles
•	 Eggs – only eggs released
•	 Sperm – only sperm released
•	 Both separately – eggs and sperm released separately from the same colony. Examples include 

Lobophyllia hemprichii and Goniastrea favulus
•	 Not recorded – release of gametes not observed or not reported

Situation             In situ = spawning observed underwater or Ex situ = spawning observed in tanks of colony(ies) 
recently removed from the reef.

Timezone          local time zone on the date of the spawning observation. This allows local time of spawning to be 
related to local time of sunset (or occasionally sunrise, for daytime spawners). This field is not an 
integer to accommodate 30 minute time differences (e.g. India and Sri Lanka are on UTC + 5.5). 
Enter -ve values for sites west of the Greenwich Meridian: e.g. −11 for Hawaii. (Note: Daylight 
Saving Times mean that time zones at some sites vary with date, e.g. Fiji goes from UTC + 12 to 
UTC + 13 from early November to early January).

The next four fields contain benchmarks for comparing spawning among sites for different species or groups 
of species23. The first is the date of the nearest full moon (DoNFM) to the date of spawning (with 75% of spawning 
recorded in the week after the full moon). This allows all spawning dates to be calculated in terms of days before 
or after the full moon (DoSRtNFM). Sunset provides a benchmark for comparing the times of spawning for most 
spawners (over 90% of spawning started within 4 hours of sunset) and sunrise for a few daytime spawners such 
as Pocillopora verrucosa. Dates of full moon and times of sunrise and sunset are available for given locations 
from the web (e.g. www.timeanddate.com) and can be entered manually. However, they can also be calculated 
automatically in the database based on the date, time zone and, for sunrise and sunset, the latitude and longitude. 
Excel spreadsheets are also available on request from the corresponding authors to calculate dates of full moon 
and times of sunrise and sunset in addition to a data entry template.

https://doi.org/10.1038/s41597-020-00793-8
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DoNFM             Date of Nearest Full Moon. Calculated automatically and corrected for longitude based on the 
local time zone.

DoSRtNFM      Date of Spawning Relative to Nearest Full Moon. Calculated automatically using time zone and 
date of observation in days before (-ve) or after ( + ve) the nearest full moon (ranges from −15 
days to + 14 days).

Sunset                 local time of sunset using a 24 h clock e.g. 18:30. Sunset and sunrise times were calculated for each 
observation based on latitude, longitude and time zone of the site and the date, using the method 
in the NOAA solar calculations day spreadsheet at https://www.esrl.noaa.gov/gmd/grad/solcalc/
calcdetails.html. An Excel spreadsheet (Sunrise_Sunset_DoNFM_Calculations.xlsx) is provided 
for anyone wishing to use the Excel version of the dataset.

Sunrise              local time of sunrise using a 24 h clock e.g. 05:30. See above.
Ref_ID               a link to reference information for the data if available. If not the names of the observers are listed 

(e.g. Baird, Connolly, Dornelas and Madin unpublished)
Comments       any additional details provided

 3) Reference information (in tblReferencesForSpawningObservations):

Each set of observations is referenced to its published or unpublished source in this table via a Ref_ID. The 
table contains two main fields: “Short_ref ” (e.g. Baird et al. 2015) and “Full_reference” (e.g. Baird AH, Cumbo 
VR, Gudge S, Keith SA, Maynard JA, Tan C-H, Woolsey ES (2015) Coral reproduction on the world’s south-
ernmost reef at Lord Howe Island, Australia. Aquatic Biology 23:275–284). These can be filled in before or after 
entering spawning observations. An email address is provided for all unpublished contributions.

Notes to recording the time of spawning. For the quality of a start or end time to be ‘Exact’, a colony 
must be under continuous observation and the time of onset or end of spawning be observed and recorded. Most 
in situ observations would be expected to be approximate (‘Approx’).

The Quality_start, Quality_end, No_start and No_end fields are designed to accommodate the most common 
ways spawning is observed. A series of examples are given below.

 1. A colony is observed spawning but it is not known exactly when it started. No end time is recorded.
Here enter the time the colony was first observed spawning as the Start_time and the Quality_start as 
‘Approx’. Leave the End_time blank and set No_end to True.

 2. A colony is followed closely until spawning is observed to begin but the precise time when spawning ends 
is not recorded. However, the colony is observed to be still dribbling spawn 30 minutes after spawning 
started.
Here enter the Quality_start_ as ‘Exact’ with the End_time set to 30 minutes after the Start_time and the 
Quality_end set to ‘Approx’.

 3. A colony is followed closely from the beginning until the end of spawning.
Here enter the times and note Quality_start and Quality_end as ‘Exact’.

 4. A colony is placed in a bucket and checked every 30 minutes. At the first observation there is no evidence of 
spawning, 30 min later the surface of the water is covered in bundles and the colony is no longer spawning.
Here enter the time of the first observation as the start time and the time of the second observation as the 
end time and set Quality_start and Quality_end to ‘Approx’.

 5. Only the night of spawning is known, for example, gametes are no longer apparent in a tagged and sequen-
tially sampled colony.
 Here don’t enter either a start time or an end time and leave Quality_start and Quality_end blank. Set No_
start and No_end to True.

Species identifications. Species were generally identified following18,24 or by comparing skeletons to the 
type material or the original descriptions of nominal species. Specimens identified following18,24 were updated to 
the currently accepted names at the World Register of Marine Species19. The database also allows for uncertainties 
in species identifications to be indicated with the use of a series of open nomenclature qualifiers25,26 that allow the 
assignment of specimens to a nominal species with varying degrees of certainty. Specimens that closely resemble 
the type of a nominal species are given the qualifier cf. (e.g. Acropora cf. nasuta). Specimens that have morpholog-
ical affinities to a nominal species but appear distinct are given the qualifier aff. (e.g. Acropora aff. pulchra): these 
specimens are either geographical variants of species with high morphological plasticity or potentially unde-
scribed species. Species that could not be matched with the type material of any nominal species were labelled 
as sp. in addition to the location where they were collected (e.g. Acropora sp_1_Fiji). These specimens are most 
probably undescribed species. For 1% of records spawning colonies were only identified to genus (e.g. Montipora 
sp.). Contact the sources of these data for further information on the species identity.

Data Records
A snapshot of the data contained in this descriptor can be downloaded from figshare27. The data includes 6178 
observations, 3085 of which were unpublished with the remainder gleaned from the literature28–128. These data 
have been through a rigorous quality control and editorial process. Annual updates of the dataset will be uploaded 
to figshare as new version and also made available at any time on request from the Editor (JRG). Contributions to 
the CSD are welcome at any time and should be sent to the Editor (JRG).
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Technical Validation
The database is governed on a voluntary basis, by an Editor (JRG), Assistant Editors (JB & AGB), a Taxonomy 
Advisor (AHB) and a Database Administrator (AJE). Quality control of data and editorial procedures include:

 1. Contributor approval. Database users must request permission to become a database contributor.
 2. Editorial approval. Once a contributor sends data to the Editor, the data will be checked and if correctly 

formatted will be forward to the Database Administrator
 3. User feedback. Data issues can be reported for any observation by email to the Editor

Received: 18 June 2020; Accepted: 19 November 2020;
Published: xx xx xxxx
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