56 research outputs found

    PLoS Negl Trop Dis

    Get PDF
    International audienc

    Disentangling diverse responses to climate change among global marine ecosystem models

    Get PDF
    Climate change is warming the ocean and impacting lower trophic level (LTL) organisms. Marine ecosystem models can provide estimates of how these changes will propagate to larger animals and impact societal services such as fisheries, but at present these estimates vary widely. A better understanding of what drives this inter-model variation will improve our ability to project fisheries and other ecosystem services into the future, while also helping to identify uncertainties in process understanding. Here, we explore the mechanisms that underlie the diversity of responses to changes in temperature and LTLs in eight global marine ecosystem models from the Fisheries and Marine Ecosystem Model Intercomparison Project (FishMIP). Temperature and LTL impacts on total consumer biomass and ecosystem structure (defined as the relative change of small and large organism biomass) were isolated using a comparative experimental protocol. Total model biomass varied between −35% to +3% in response to warming, and -17% to +15% in response to LTL changes. There was little consensus about the spatial redistribution of biomass or changes in the balance between small and large organisms (ecosystem structure) in response to warming, an LTL impacts on total consumer biomass varied depending on the choice of LTL forcing terms. Overall, climate change impacts on consumer biomass and ecosystem structure are well approximated by the sum of temperature and LTL impacts, indicating an absence of nonlinear interaction between the models’ drivers. Our results highlight a lack of theoretical clarity about how to represent fundamental ecological mechanisms, most importantly how temperature impacts scale from individual to ecosystem level, and the need to better understand the two-way coupling between LTL organisms and consumers. We finish by identifying future research needs to strengthen global marine ecosystem modelling and improve projections of climate change impacts

    Introduction, History and Sources

    No full text

    Ventricular repolarisation and holter monitoring: role of sympathetic blockade on the physiology of the QT/RR ratio

    No full text
    Circadian variations of the QT interval and its heart rate dependency have been established. However, the respective roles of the sympathetic and parasympathetic nervous systems in their regulation are still undetermined. Eighteen healthy volunteers (average age 39 +/- 7 years, 10 men) were recruited and selected randomly to receive either placebo or atenolol (100 mg/day). The treatments were crossed after 7 days. The rate dependency of the QT was assessed by day and by night by 24 hour Holter ECG monitoring. The effects of atenolol on the rate dependency of the QT interval depend on the time of day. During the daytime, the QT rate dependency was reduced by atenolol (0.180 (0.162: 0.198) versus 0.216 (0.195: 0.236) with placebo, p< 0.01) whereas during the night, the QT rate dependency was the same in both groups. Therefore, the betablocker is associated with an inversion of the daily modulation of the QT fate dependency. The daytime rate-dependency of the QT interval in decreased with betablocker therapy. This result suggests a direct or indirect influence of the sympathetic nervous system on the rate dependency of ventricular repolarisation

    A new sensitive serological assay for detection of lentivirus infections in small ruminants

    No full text
    Lentivirus infections in small ruminants represent an economic problem affecting several European countries with important sheep-breeding industries. Programs for control and eradication of these infections are being initiated and require reliable screening assays. This communication describes the construction and evaluation of a new serological screening enzyme-linked immnnosorbent assay (ELISA) for the detection of antibodies to maedi-visna virus (MVV) in sheep and to caprine arthritis encephalitis virus (CAEV) in goats. The solid phase is sensitized with a combination of the major core protein p25 of MW produced in Escherichia coil and a peptide derived from the immunodominant region of the viral transmembrane protein gp46. The peptide carries an N-terminal biotin residue and is complexed with streptavidin prior to being coated. The new assay was evaluated with 2,336 sheep serum samples from different European countries with large differences in the levels of prevalence of MW infections, and the results have been compared to those of the standard agar gel immunodiffusion test. Discrepant samples were analyzed by Western blotting with viral lysate, and most sera could be classified unambiguously. The estimated overall sensitivity of the new ELISA was 99.4% (95% confidence interval [CI], 98.4 to 99.8%) and the specificity was 99.3% (95% CI, 98.7 to 99.6%). A limited set of goat sera (n = 212) was also analyzed, with similar results. These data indicate that the new assay is a reliable tool that can be used in control and eradication programs for small ruminant lentivirus infections

    High prevalence of ventricular repolarization abnormalities in people carrying TGFβR2 mutations

    No full text
    Abstract Mutations in the TGFβR2 gene have been associated with a life threatening risk of aortic dissection but no arrhythmic death has been previously reported. Two young females carrying a TGFβR2 mutation, initially diagnosed as Marfan syndrome or Loeys Dietz syndrome, presented sudden death with autopsy ruling out dissection. The ECGs of the 2 Sudden Cardiac Deaths revealed profound ventricular repolarization abnormalities with a sinusoidal T-U morphology associated with normal left ventricular ejection fraction. These data strongly suggest sudden cardiac arrhythmic deaths and prompted us to systematically study the repolarization pattern in the patients with TGFβR2 mutations. ECG findings from 58 mutation carriers patients (TGFβR2 group) were compared with those of 46 non-affected first degree relatives (control group). TGFβR2 mutation was associated with ventricular repolarization abnormalities in 47% of patients (p < 0.001 vs. controls), including a 19.6 ms (95%CI 8.7; 30.5) QTc interval prolongation compared to the non-affected first degree relatives (p < 0.001), higher prevalence of abnormal U waves (16% vs. 2%), and sinusoidal T-U morphology (10% vs. 0%). TGFβR2 mutations can be associated with abnormal ventricular repolarization pattern, longer QT interval than non-carrier relatives and an increased risk for sudden death
    corecore