44 research outputs found

    850 μm Observations of the 11 July 1991 Total Solar Eclipse

    Get PDF
    We present observations of the 11 July 1991 total solar eclipse made from the Caltech Submillimeter Observatory. The 850 μm limb is extended 3380±140 km above the visible limb, and there is a 10% brightening at the extreme limb. The measured limb height agrees with previous work at shorter and longer wavelengths. The run of limb heights with wavelength is well fit by a single electron density scale height. We argue that there is no need to invoke spicule geometry to explain the observations

    850 μm Observations of the 11 July 1991 Total Solar Eclipse

    Get PDF
    We present observations of the 11 July 1991 total solar eclipse made from the Caltech Submillimeter Observatory. The 850 μm limb is extended 3380±140 km above the visible limb, and there is a 10% brightening at the extreme limb. The measured limb height agrees with previous work at shorter and longer wavelengths. The run of limb heights with wavelength is well fit by a single electron density scale height. We argue that there is no need to invoke spicule geometry to explain the observations

    Tomographic 3D-Modeling of the Solar Corona with FASR

    Full text link
    The "Frequency-Agile Solar Radiotelescope" (FASR) litteraly opens up a new dimension in addition to the 3D Euclidian geometry: the frequency dimension. The 3D geometry is degenerated to 2D in all images from astronomical telescopes, but the additional frequency dimension allows us to retrieve the missing third dimension by means of physical modeling. We call this type of 3D reconstruction "Frequency Tomography". In this study we simulate a realistic 3D model of an active region, composed of 500 coronal loops with the 3D geometry [x(s),y(s),z(s)] constrained by magnetic field extrapolations and the physical parameters of the density n_e(s) and temperature T_e(s) given by hydrostatic solutions. We simulate a series of 20 radio images in a frequency range of f=0.1-10 GHz, anticipating the capabilities of FASR, and investigate what physical information can be retrieved from such a dataset. We discuss also forward-modeling of the chromospheric and Quiet Sun density and temperature structure, another primary goal of future FASR science.Comment: 10 Figure

    Display of probability densities for data from a continuous distribution

    Get PDF
    Based on cumulative distribution functions, Fourier series expansion and Kolmogorov tests, we present a simple method to display probability densities for data drawn from a continuous distribution. It is often more efficient than using histograms.Comment: 5 pages, 4 figures, presented at Computer Simulation Studies XXIV, Athens, GA, 201

    Explaining Andean Potato Weevils in Relation to Local and Landscape Features: A Facilitated Ecoinformatics Approach

    Get PDF
    BACKGROUND: Pest impact on an agricultural field is jointly influenced by local and landscape features. Rarely, however, are these features studied together. The present study applies a "facilitated ecoinformatics" approach to jointly screen many local and landscape features of suspected importance to Andean potato weevils (Premnotrypes spp.), the most serious pests of potatoes in the high Andes. METHODOLOGY/PRINCIPAL FINDINGS: We generated a comprehensive list of predictors of weevil damage, including both local and landscape features deemed important by farmers and researchers. To test their importance, we assembled an observational dataset measuring these features across 138 randomly-selected potato fields in Huancavelica, Peru. Data for local features were generated primarily by participating farmers who were trained to maintain records of their management operations. An information theoretic approach to modeling the data resulted in 131,071 models, the best of which explained 40.2-46.4% of the observed variance in infestations. The best model considering both local and landscape features strongly outperformed the best models considering them in isolation. Multi-model inferences confirmed many, but not all of the expected patterns, and suggested gaps in local knowledge for Andean potato weevils. The most important predictors were the field's perimeter-to-area ratio, the number of nearby potato storage units, the amount of potatoes planted in close proximity to the field, and the number of insecticide treatments made early in the season. CONCLUSIONS/SIGNIFICANCE: Results underscored the need to refine the timing of insecticide applications and to explore adjustments in potato hilling as potential control tactics for Andean weevils. We believe our study illustrates the potential of ecoinformatics research to help streamline IPM learning in agricultural learning collaboratives

    Measurement of the Generalized Polarizabilities of the Proton in Virtual Scattering at Q2=0.92 and 1.76 GeV2: I. Low Energy Expansion Analysis

    Full text link
    Virtual Compton Scattering is studied at the Thomas Jefferson National Accelerator Facility at low Center-of-Mass energies, below pion threshold. Following the Low Energy Theorem for the epepγ ep \to ep \gamma process, we obtain values for the two structure functions Pll-Ptt/epsilon and Plt at four-momentum transfer squared Q2=0.92 and 1.76 GeV2.Comment: 4 pages, 2 figures, to be submitted to PRL. Figs 1 and 2, lettering enlarge

    A ‘VISUAL’ APPROACH TO MENANDER - (A.K.) Petrides Menander, New Comedy and the Visual. Pp. xii + 322, ills. Cambridge: Cambridge University Press, 2014. Cased, £65, US$99. ISBN: 978-1-107-06843-8.

    Get PDF
    High-energy X-rays and gamma-rays from solar flares were discovered just over fifty years ago. Since that time, the standard for the interpretation of spatially integrated flare X-ray spectra at energies above several tens of keV has been the collisional thick-target model. After the launch of the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) in early 2002, X-ray spectra and images have been of sufficient quality to allow a greater focus on the energetic electrons responsible for the X-ray emission, including their origin and their interactions with the flare plasma and magnetic field. The result has been new insights into the flaring process, as well as more quantitative models for both electron acceleration and propagation, and for the flare environment with which the electrons interact. In this article we review our current understanding of electron acceleration, energy loss, and propagation in flares. Implications of these new results for the collisional thick-target model, for general flare models, and for future flare studies are discussed.Comment: This is an article from a monograph on the physics of solar flares, inspired by RHESSI observations. The individual articles are to appear in Space Science Reviews (2011
    corecore