11 research outputs found

    Distinct cortical and striatal actions of a β-arrestin-biased dopamine D2 receptor ligand reveal unique antipsychotic-like properties.

    Get PDF
    The current dopamine (DA) hypothesis of schizophrenia postulates striatal hyperdopaminergia and cortical hypodopaminergia. Although partial agonists at DA D2 receptors (D2Rs), like aripiprazole, were developed to simultaneously target both phenomena, they do not effectively improve cortical dysfunction. In this study, we investigate the potential for newly developed β-arrestin2 (βarr2)-biased D2R partial agonists to simultaneously target hyper- and hypodopaminergia. Using neuron-specific βarr2-KO mice, we show that the antipsychotic-like effects of a βarr2-biased D2R ligand are driven through both striatal antagonism and cortical agonism of D2R-βarr2 signaling. Furthermore, βarr2-biased D2R agonism enhances firing of cortical fast-spiking interneurons. This enhanced cortical agonism of the biased ligand can be attributed to a lack of G-protein signaling and elevated expression of βarr2 and G protein-coupled receptor (GPCR) kinase 2 in the cortex versus the striatum. Therefore, we propose that βarr2-biased D2R ligands that exert region-selective actions could provide a path to develop more effective antipsychotic therapies

    Structural basis for Smoothened receptor modulation and chemoresistance to anticancer drugs

    Get PDF
    The Smoothened receptor (SMO) mediates signal transduction in the hedgehog pathway, which is implicated in normal development and carcinogenesis. SMO antagonists can suppress the growth of some tumors; however, mutations at SMO have been found to abolish their anti-tumor effects, a phenomenon known as chemoresistance. Here we report three crystal structures of human SMO bound to the antagonists SANT1 and Anta XV, and the agonist, SAG1.5, at 2.6–2.8Å resolution. The long and narrow cavity in the transmembrane domain of SMO harbors multiple ligand binding sites, where SANT1 binds at a deeper site as compared with other ligands. Distinct interactions at D4736.55 elucidated the structural basis for the differential effects of chemoresistance mutations on SMO antagonists. The agonist SAG1.5 induces a conformational rearrangement of the binding pocket residues, which could contribute to SMO activation. Collectively, these studies reveal the structural basis for the modulation of SMO by small molecules

    A novel isoform of acetylcholinesterase exacerbates photoreceptors death after photic stress

    Get PDF
    PURPOSE: To study the involvement of stress-induced acetylcholinesterase (AChE) expression in light-induced retinal damage in albino rats. METHODS: Adult albino rats were exposed for 24 hours to bright, damaging light. AChE expression was monitored by in situ hybridization, by histochemistry for AChE activity, and by immunocytochemistry. An orphan antisense agent (Monarsen; Ester Neurosciences, Ltd., Herzlia Pituach, Israel) was administered intraperitoneally to minimize light-induced AChE expression. The electroretinogram (ERG) was recorded to assess retinal function. RESULTS: Twenty-four-hour exposure to bright light caused severe reduction in the ERG responses and augmented expression of mRNA for the "read-through" variant of AChE (AChE-R) in photoreceptor inner segments (IS), bipolar cells, and ganglion cells. AChE activity increased in IS. The expressed AChE protein was a novel variant, characterized by an extended N terminus (N-AChE). Systemic administration of the orphan antisense agent, Monarsen, reduced the photic induction of mRNA for AChE-R, and of the N-AChE protein. Rats exposed to bright, damaging light and treated daily with Monarsen exhibited larger ERG responses, relatively thicker outer nuclear layer (ONL), and more ONL nuclei than did rats exposed to the same damaging light but treated daily with saline. CONCLUSIONS: The findings indicate that the photic-induced novel variant of AChE (N-AChE-R) may be causally involved with retinal light damage and suggest the use of RNA targeting for limiting such damage.Supported in part by the Chief Scientist, Israel Ministry of Health, the Selma Mitrani Age Related Macular Degeneration Research Fund (IP), and the European Alternative Splicing Network of Excellence Grant EURASNET LSH-2004-1.1.5-3 (HS)

    Distinct cortical and striatal actions of a β-arrestin–biased dopamine D2 receptor ligand reveal unique antipsychotic-like properties

    No full text
    The current dopamine (DA) hypothesis of schizophrenia postulates striatal hyperdopaminergia and cortical hypodopaminergia. Although partial agonists at DA D2 receptors (D2Rs), like aripiprazole, were developed to simultaneously target both phenomena, they do not effectively improve cortical dysfunction. In this study, we investigate the potential for newly developed β-arrestin2 (βarr2)-biased D2R partial agonists to simultaneously target hyper- and hypodopaminergia. Using neuron-specific βarr2-KO mice, we show that the antipsychotic-like effects of a βarr2-biased D2R ligand are driven through both striatal antagonism and cortical agonism of D2R-βarr2 signaling. Furthermore, βarr2-biased D2R agonism enhances firing of cortical fast-spiking interneurons. This enhanced cortical agonism of the biased ligand can be attributed to a lack of G-protein signaling and elevated expression of βarr2 and G protein-coupled receptor (GPCR) kinase 2 in the cortex versus the striatum. Therefore, we propose that βarr2-biased D2R ligands that exert region-selective actions could provide a path to develop more effective antipsychotic therapies

    Zebrafish behavioral profiling identifies multi-target antipsychotic-like compounds

    Get PDF
    Many psychiatric drugs act on multiple targets and therefore require screening assays that encompass a wide target space. With sufficiently rich phenotyping, and a large sampling of compounds, it should be possible to identify compounds with desired mechanisms of action based on their behavioral profiles alone. Although zebrafish (Danio rerio) behaviors have been used to rapidly identify neuroactive compounds, it remains unclear exactly what kind of behavioral assays might be necessary to identify multi-target compounds such as antipsychotics. Here, we developed a battery of behavioral assays in larval zebrafish to determine if behavioral profiles could provide sufficient phenotypic resolution to identify and classify psychiatric drugs. Using the antipsychotic drug haloperidol as a test case, we found that behavioral profiles of haloperidol-treated animals could be used to identify previously uncharacterized compounds with desired antipsychotic-like activities and multi-target mechanisms of action
    corecore