60 research outputs found

    Decrypting the H-NS-dependent regulatory cascade of acid stress resistance in Escherichia coli

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>H-NS regulates the acid stress resistance. The present study aimed to characterize the H-NS-dependent cascade governing the acid stress resistance pathways and to define the interplay between the different regulators.</p> <p>Results</p> <p>We combined mutational, phenotypic and gene expression analyses, to unravel the regulatory hierarchy in acid resistance involving H-NS, RcsB-P/GadE complex, HdfR, CadC, AdiY regulators, and DNA-binding assays to separate direct effects from indirect ones. RcsB-P/GadE regulatory complex, the general direct regulator of glutamate-, arginine- and lysine-dependent acid resistance pathways plays a central role in the regulatory cascade. However, H-NS also directly controls specific regulators of these pathways (e.g. <it>cadC</it>) and genes involved in general stress resistance (<it>hdeAB, hdeD, dps, adiY</it>). Finally, we found that in addition to H-NS and RcsB, a third regulator, HdfR, inversely controls glutamate-dependent acid resistance pathway and motility.</p> <p>Conclusions</p> <p>H-NS lies near the top of the hierarchy orchestrating acid response centred on RcsB-P/GadE regulatory complex, the general direct regulator of glutamate-, arginine- and lysine-dependent acid resistance pathways.</p

    Expansion of the SOS regulon of Vibrio cholerae through extensive transcriptome analysis and experimental validation

    Get PDF
    The SOS response is an almost ubiquitous response of cells to genotoxic stresses. The full complement of genes in the SOS regulon for Vibrio species has only been addressed through bioinformatic analyses predicting LexA binding box consensus and in vitro validation. Here, we perform whole transcriptome sequencing from Vibrio cholerae treated with mitomycin C as an SOS inducer to characterize the SOS regulon and other pathways affected by this treatment. Comprehensive transcriptional profiling allowed us to define the full landscape of promoters and transcripts active in V. cholerae. We performed extensive transcription start site (TSS) mapping as well as detection/quantification of the coding and non-coding RNA (ncRNA) repertoire in strain N16961. To improve TSS detection, we developed a new technique to treat RNA extracted from cells grown in various conditions. This allowed for identification of 3078 TSSs with an average 5'UTR of 116 nucleotides, and peak distribution between 16 and 64 nucleotides; as well as 629 ncRNAs. Mitomycin C treatment induced transcription of 737 genes and 28 ncRNAs at least 2 fold, while it repressed 231 genes and 17 ncRNAs. Data analysis revealed that in addition to the core genes known to integrate the SOS regulon, several metabolic pathways were induced. This study allowed for expansion of the Vibrio SOS regulon, as twelve genes (ubiEJB, tatABC, smpA, cep, VC0091, VC1190, VC1369-1370) were found to be co-induced with their adjacent canonical SOS regulon gene(s), through transcriptional read-through. Characterization of UV and mitomycin C susceptibility for mutants of these newly identified SOS regulon genes and other highly induced genes and ncRNAs confirmed their role in DNA damage rescue and protection. We show that genotoxic stress induces a pervasive transcriptional response, affecting almost 20% of the V. cholerae genes. We also demonstrate that the SOS regulon is larger than previously known, and its syntenic organization is conserved among Vibrio species. Furthermore, this specific co-localization is found in other Îł-proteobacteria for genes recN-smpA and rmuC-tatABC, suggesting SOS regulon conservation in this phylum. Finally, we comment on the limitations of widespread NGS approaches for identification of all RNA species in bacteria

    Macromolecular crowding links ribosomal protein gene dosage to growth rate in Vibrio cholerae

    Get PDF
    In fast-growing bacteria, the genomic location of ribosomal protein (RP) genes is biased towards the replication origin (oriC). This trait allows optimizing their expression during exponential phase since oriC neighboring regions are in higher dose due to multifork replication. Relocation of s10-spc-α locus (S10), which codes for most of the RP, to ectopic genomic positions shows that its relative distance to the oriC correlates to a reduction on its dosage, its expression, and bacterial growth rate. However, a mechanism linking S10 dosage to cell physiology has still not been determined.We hypothesized that S10 dosage perturbations impact protein synthesis capacity. Strikingly, we observed that in Vibrio cholerae, protein production capacity was independent of S10 position. Deep sequencing revealed that S10 relocation altered chromosomal replication dynamics and genome-wide transcription. Such changes increased as a function of oriC-S10 distance. Since RP constitutes a large proportion of cell mass, lower S10 dosage could lead to changes in macromolecular crowding, impacting cell physiology. Accordingly, cytoplasm fluidity was higher in mutants where S10 is most distant from oriC. In hyperosmotic conditions, when crowding differences are minimized, the growth rate and replication dynamics were highly alleviated in these strains.The genomic location of RP genes ensures its optimal dosage. However, besides of its essential function in translation, their genomic position sustains an optimal macromolecular crowding essential for maximizing growth. Hence, this could be another mechanism coordinating DNA replication to bacterial growth.Fil: Soler Bistue, Alfonso J. C.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; ArgentinaFil: Aguilar Pierlé, Sebastiån. Institut Pasteur; FranciaFil: Garcia Garcerå, Marc. Institut Pasteur; FranciaFil: Val, Marie Eve. Institut Pasteur; FranciaFil: Sismeiro, Odile. Institut Pasteur; FranciaFil: Varet, Hugo. Institut Pasteur; FranciaFil: Sieira, Rodrigo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Krin, Evelyne. Institut Pasteur; FranciaFil: Skovgaard, Ole. Roskilde Universitet; DinamarcaFil: Comerci, Diego José. Universidad Nacional de San Martin. Instituto de Investigaciones Biotecnologicas. - Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Pque. Centenario. Instituto de Investigaciones Biotecnologicas.; ArgentinaFil: Rocha, Eduardo P. C.. Institut Pasteur; FranciaFil: Mazel, Didier. Institut Pasteur; Franci

    A Tale of Two Oxidation States: Bacterial Colonization of Arsenic-Rich Environments

    Get PDF
    Microbial biotransformations have a major impact on contamination by toxic elements, which threatens public health in developing and industrial countries. Finding a means of preserving natural environments—including ground and surface waters—from arsenic constitutes a major challenge facing modern society. Although this metalloid is ubiquitous on Earth, thus far no bacterium thriving in arsenic-contaminated environments has been fully characterized. In-depth exploration of the genome of the ÎČ-proteobacterium Herminiimonas arsenicoxydans with regard to physiology, genetics, and proteomics, revealed that it possesses heretofore unsuspected mechanisms for coping with arsenic. Aside from multiple biochemical processes such as arsenic oxidation, reduction, and efflux, H. arsenicoxydans also exhibits positive chemotaxis and motility towards arsenic and metalloid scavenging by exopolysaccharides. These observations demonstrate the existence of a novel strategy to efficiently colonize arsenic-rich environments, which extends beyond oxidoreduction reactions. Such a microbial mechanism of detoxification, which is possibly exploitable for bioremediation applications of contaminated sites, may have played a crucial role in the occupation of ancient ecological niches on earth

    Structure, Function, and Evolution of the Thiomonas spp. Genome

    Get PDF
    Bacteria of the Thiomonas genus are ubiquitous in extreme environments, such as arsenic-rich acid mine drainage (AMD). The genome of one of these strains, Thiomonas sp. 3As, was sequenced, annotated, and examined, revealing specific adaptations allowing this bacterium to survive and grow in its highly toxic environment. In order to explore genomic diversity as well as genetic evolution in Thiomonas spp., a comparative genomic hybridization (CGH) approach was used on eight different strains of the Thiomonas genus, including five strains of the same species. Our results suggest that the Thiomonas genome has evolved through the gain or loss of genomic islands and that this evolution is influenced by the specific environmental conditions in which the strains live

    The superintegron integrase and the cassette promoters are co-regulated in Vibrio cholerae.

    No full text
    Chromosome 2 of Vibrio cholerae carries a chromosomal superintegron, composed of an integrase, a cassette integration site (attI) and an array of mostly promoterless gene cassettes. We determined the precise location of the promoter, Pc, which drives the transcription of the first cassettes of the V. cholerae superintegron. We found that cassette mRNA starts 65 bp upstream of the attI site, so that the inversely oriented promoters Pc and Pint (integrase promoter) partly overlap, allowing for their potential co-regulation. Pint was previously shown to be induced during the SOS response and is further controlled by the catabolite repression cAMP-CRP complex. We found that cassette expression from Pc was also controlled by the cAMP-CRP complex, but is not part of the SOS regulon. Pint and Pc promoters were both found to be induced in rich medium, at high temperature, high salinity and at the end of exponential growth phase, although at very different levels and independently of sigma factor RpoS. All these results show that expression from the integrase and cassette promoters can take place at the same time, thus leading to coordinated excisions and integrations within the superintegron and potentially coupling cassette shuffling to immediate selective advantage

    RpoS Plays a Central Role in the SOS Induction by Sub-Lethal Aminoglycoside Concentrations in Vibrio cholerae

    Get PDF
    International audienceBacteria encounter sub-inhibitory concentrations of antibiotics in various niches, where these low doses play a key role for antibiotic resistance selection. However, the physiological effects of these sub-lethal concentrations and their observed connection to the cellular mechanisms generating genetic diversification are still poorly understood. It is known that, unlike for the model bacterium Escherichia coli, sub-minimal inhibitory concentrations (sub-MIC) of aminoglycosides (AGs) induce the SOS response in Vibrio cholerae. SOS is induced upon DNA damage, and since AGs do not directly target DNA, we addressed two issues in this study: how sub-MIC AGs induce SOS in V. cholerae and why they do not do so in E. coli. We found that when bacteria are grown with tobramycin at a concentration 100-fold below the MIC, intracellular reactive oxygen species strongly increase in V. cholerae but not in E. coli. Using flow cytometry and gfp fusions with the SOS regulated promoter of intIA, we followed AG-dependent SOS induction. Testing the different mutation repair pathways, we found that over-expression of the base excision repair (BER) pathway protein MutY relieved this SOS induction in V. cholerae, suggesting a role for oxidized guanine in AG-mediated indirect DNA damage. As a corollary, we established that a BER pathway deficient E. coli strain induces SOS in response to sub-MIC AGs. We finally demonstrate that the RpoS general stress regulator prevents oxidative stress-mediated DNA damage formation in E. coli. We further show that AG-mediated SOS induction is conserved among the distantly related Gram negative pathogens Klebsiella pneumoniae and Photorhabdus luminescens, suggesting that E. coli is more of an exception than a paradigm for the physiological response to antibiotics sub-MIC

    Connecting Environment and Genome Plasticity in the Characterization of Transformation-Induced SOS Regulation and Carbon Catabolite Control of the Vibrio cholerae Integron Integrase

    No full text
    International audienceThe human pathogen Vibrio cholerae carries a chromosomal superintegron (SI). The SI contains an array of hundreds of gene cassettes organized in tandem which are stable under conditions when no particular stress is applied to bacteria (such as during laboratory growth). Rearrangements of these cassettes are catalyzed by the activity of the associated integron integrase. Understanding the regulation of integrase expression is pivotal to fully comprehending the role played by this genetic reservoir for bacterial adaptation and its connection with the development of antibiotic resistance. Our previous work established that the integrase is regulated by the bacterial SOS response and that it is induced during bacterial conjugation. Here, we show that transformation, another horizontal gene transfer (HGT) mechanism, also triggers integrase expression through SOS induction, underlining the importance of HGT in genome plasticity. Moreover, we report a new cyclic AMP (cAMP)-cAMP receptor protein (CRP)-dependent regulation mechanism of the integrase, highlighting the influence of the extracellular environment on chromosomal gene content. Altogether, our data suggest an interplay between different stress responses and regulatory pathways for the modulation of the recombinase expression, thus showing how the SI remodeling mechanism is merged into bacterial physiology
    • 

    corecore