1,439 research outputs found

    A Cacciopoli-Type Inequality to Prove Coercivity of a Bilinear Form Associated with Spatial Hysteresis Internal Damping for an Euler-Bernoulli Beam

    Get PDF
    We prove an inequality that resembles Cacciopoli inequalities in that it bounds the norm of the derivative of a function by using the norm of the function. Unlike in Cacciopoli inequalities, there is no restriction on the function, a fact made up for by adding an extra term to the norm of the function. The inequality arose in the proof that a bilinear form associated with spatial hysteresis internal damping for an Euler-Bernoulli beam is coercive

    Highly sensitive contact pressure measurements using FBG patch in endotracheal tube cuff

    Get PDF
    A method for measuring the contact pressure between an endotracheal tube cuff and the trachea was designed and developed by using a fibre Bragg grating (FBG) based optical fibre sensor. The FBG sensor is encased in an epoxy based UV-cured cuboid patch and transduces the transversely loaded pressure into an axial strain that induces wavelength shift of the Bragg reflection. The polymer patch was created by using a PTFE based mould and increases tensile strength and sensitivity of the bare fibre FBG to pressure to 2.10×10-2 nm/kPa. The characteristics of the FBG patch allow for continuous measurement of contact pressure. The measurement of contact pressure was demonstrated by the use of a 3D printed model of a human trachea. The influence of temperature on the measurements is reduced significantly by the use of a second FBG sensor patch that is not in contact with the trachea. Intracuff pressure measurements performed using a commercial manometer agreed well with the FBG contact pressure measurements. © (2016) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only

    Rebounce and Black hole formation in a Gravitational Collapse Model with Vanishing Radial Pressure

    Full text link
    We examine spherical gravitational collapse of a matter model with vanishing radial pressure and non-zero tangential pressure. It is seen analytically that the collapsing cloud either forms a black hole or disperses depending on values of the initial parameters which are initial density, tangential pressure and velocity profile of the cloud. A threshold of black hole formation is observed near which a scaling relation is obtained for the mass of black hole, assuming initial profiles to be smooth. The similarities in the behaviour of this model at the onset of black hole formation with that of numerical critical behaviour in other collapse models are indicated.Comment: 15 pages, To be published in Gen.Rel.Gra

    Ferromagnetic models for cooperative behavior: Revisiting Universality in complex phenomena

    Full text link
    Ferromagnetic models are harmonic oscillators in statistical mechanics. Beyond their original scope in tackling phase transition and symmetry breaking in theoretical physics, they are nowadays experiencing a renewal applicative interest as they capture the main features of disparate complex phenomena, whose quantitative investigation in the past were forbidden due to data lacking. After a streamlined introduction to these models, suitably embedded on random graphs, aim of the present paper is to show their importance in a plethora of widespread research fields, so to highlight the unifying framework reached by using statistical mechanics as a tool for their investigation. Specifically we will deal with examples stemmed from sociology, chemistry, cybernetics (electronics) and biology (immunology).Comment: Contributing to the proceedings of the Conference "Mathematical models and methods for Planet Heart", INdAM, Rome 201

    Thresholds of biodiversity and ecosystem function in a forest ecosystem undergoing dieback

    Get PDF
    Ecological thresholds, which represent points of rapid change in ecological properties, are of major scientific and societal concern. However, very little research has focused on empirically testing the occurrence of thresholds in temperate terrestrial ecosystems. To address this knowledge gap, we tested whether a number of biodiversity, ecosystem functions and ecosystem condition metrics exhibited thresholds in response to a gradient of forest dieback, measured as changes in basal area of living trees relative to areas that lacked recent dieback. The gradient of dieback was sampled using 12 replicate study areas in a temperate forest ecosystem. Our results provide novel evidence of several thresholds in biodiversity (namely species richness of ectomycorrhizal fungi, epiphytic lichen and ground flora); for ecological condition (e.g. sward height, palatable seedling abundance) and a single threshold for ecosystem function (i.e. soil respiration rate). Mechanisms for these thresholds are explored. As climate-induced forest dieback is increasing worldwide, both in scale and speed, these results imply that threshold responses may become increasingly widespread

    Biomarkers of oxidative stress: methods and measures of oxidative DNA damage (COMET assay) and telomere shortening

    Get PDF
    Oxidative stress is fast becoming the nutritional and medical buzzword for the twenty-first century. The theoretical importance of oxidative stress in diabetes is highlighted by its potential double impact on metabolic dysfunction on one hand and the vascular system on the other hand. The new concept of oxidative stress, being an important trigger in the onset and progression of diabetes and its complications, emphasizes the need for measurement of markers of oxidation to assess the degree of oxidative stress. While we have been routinely measuring biomarkers in our molecular epidemiology projects, here we discuss the utility of two assays, (a) DNA damage assessment by COMET measurement and (b) telomere length measurement. As DNA damage is efficiently repaired by cellular enzymes, its measurement gives a snapshot view of the level of oxidative stress. The protocol allows for measurement of oxidative DNA damage (FPG-sensitive DNA strand breaks). Telomere length measured by Southern blotting technique allows one to estimate the chronic burden of oxidative stress at the molecular level and is now considered as biomarker of biological aging

    Heritability and impact of environmental effects during pregnancy on antral follicle count in cattle

    Get PDF
    peer-reviewedPrevious studies have documented that ovarian antral follicle count (AFC) is positively correlated with number of healthy follicles and oocytes in ovaries (ovarian reserve), as well as ovarian function and fertility in cattle. However, environmental factors (e.g., nutrition, steroids) during pregnancy in cattle and sheep can reduce AFC in offspring. The role that genetic and environmental factors play in influencing the variability in AFC and, correspondingly, the size of the ovarian reserve, ovarian function, and fertility, are, however, poorly understood. The present study tests the hypothesis that variability in AFC in offspring is influenced not only by genetic merit but also by the dam age and lactation status (lactating cows vs. nonlactating heifers) and milk production during pregnancy. Antral follicle count was assessed by ultrasonography in 445 Irish Holstein-Friesian dairy cows and 522 US Holstein-Friesian dairy heifers. Heritability estimates for AFC (± standard error) were 0.31 ± 0.14 and 0.25 ± 0.13 in dairy cows and heifers, respectively. Association analysis between both genotypic sire data and phenotypic dam data with AFC in their daughters was performed using regression and generalized linear models. Antral follicle count was negatively associated with genetic merit for milk fat concentration. Also, AFC was greater in offspring of dams that were lactating (n = 255) compared with nonlactating dams (n = 89) during pregnancy and was positively associated with dam milk fat concentration and milk fat-to-protein ratio. In conclusion, AFC in dairy cattle is a moderately heritable genetic trait affected by age or lactation status and milk quality but not by level of dam’s milk production during pregnancy

    Dysfunctional Dopaminergic Neurones in Mouse Models of Huntington's Disease: A Role for SK3 Channels

    Get PDF
    Background: Huntington's disease (HD) is a late-onset fatal neurodegenerative disorder caused by a CAG trinucleotide repeat expansion in the gene coding for the protein huntingtin and is characterised by progressive motor, psychiatric and cognitive decline. We previously demonstrated that normal synaptic function in HD could be restored by application of dopamine receptor agonists, suggesting that changes in the release or bioavailability of dopamine may be a contributing factor to the disease process. Objective: In the present study, we examined the properties of midbrain dopaminergic neurones and dopamine release in presymptomatic and symptomatic transgenic HD mice. Methods and Results:Using intracellular sharp recordings and immunohistochemistry, we found that neuronal excitability was increased due to a loss of slow afterhyperpolarisation and that these changes were related to an apparent functional loss and abnormal distribution of SK3 channels (KCa2.3 encoded by the KCNN3 gene), a class of small-conductance calcium-activated potassium channels. Electrochemical detection of dopamine showed that this observation was associated with an enhanced dopamine release in presymptomatic transgenic mice and a drastic reduction in symptomatic animals. These changes occurred in the context of a progressive expansion in the CAG repeat number and nuclear localisation of mutant protein within the substantia nigra pars compacta. Conclusions: Dopaminergic neuronal dysfunction is a key early event in HD disease progression. The initial increase in dopamine release appears to be related to a loss of SK3 channel function, a protein containing a polyglutamine tract. Implications for polyglutamine-mediated sequestration of SK3 channels, dopamine-associated DNA damage and CAG expansion are discussed in the context of HD.</br

    Observed Effect of Magnetic Fields on the Propagation of Magnetoacoustic Waves in the Lower Solar Atmosphere

    Full text link
    We study Hinode/SOT-FG observations of intensity fluctuations in Ca II H-line and G-band image sequences and their relation to simultaneous and co-spatial magnetic field measurements. We explore the G-band and H-line intensity oscillation spectra both separately and comparatively via their relative phase differences, time delays and cross-coherences. In the non-magnetic situations, both sets of fluctuations show strong oscillatory power in the 3 - 7 mHz band centered at 4.5 mHz, but this is suppressed as magnetic field increases. A relative phase analysis gives a time delay of H-line after G-band of 20\pm1 s in non-magnetic situations implying a mean effective height difference of 140 km. The maximum coherence is at 4 - 7 mHz. Under strong magnetic influence the measured delay time shrinks to 11 s with the peak coherence near 4 mHz. A second coherence maximum appears between 7.5 - 10 mHz. Investigation of the locations of this doubled-frequency coherence locates it in diffuse rings outside photospheric magnetic structures. Some possible interpretations of these results are offered.Comment: 19 pages, 6 figure

    Bounds from Primordial Black Holes with a Near Critical Collapse Initial Mass Function

    Get PDF
    Recent numerical evidence suggests that a mass spectrum of primordial black holes (PBHs) is produced as a consequence of near critical gravitational collapse. Assuming that these holes formed from the initial density perturbations seeded by inflation, we calculate model independent upper bounds on the mass variance at the reheating temperature by requiring the mass density not exceed the critical density and the photon emission not exceed current diffuse gamma-ray measurements. We then translate these results into bounds on the spectral index n by utilizing the COBE data to normalize the mass variance at large scales, assuming a constant power law, then scaling this result to the reheating temperature. We find that our bounds on n differ substantially (\delta n > 0.05) from those calculated using initial mass functions derived under the assumption that the black hole mass is proportional to the horizon mass at the collapse epoch. We also find a change in the shape of the diffuse gamma-ray spectrum which results from the Hawking radiation. Finally, we study the impact of a nonzero cosmological constant and find that the bounds on n are strengthened considerably if the universe is indeed vacuum-energy dominated today.Comment: 24 pages, REVTeX, 5 figures; minor typos fixed, two refs added, version to be published in PR
    • …
    corecore