14 research outputs found

    G1 Domain of Versican Regulates Hyaluronan Organization and the Phenotype of Cultured Human Dermal Fibroblasts

    Get PDF
    Variants of versican have wide-ranging effects on cell and tissue phenotype, impacting proliferation, adhesion, pericellular matrix composition, and elastogenesis. The G1 domain of versican, which contains two Link modules that bind to hyaluronan (HA), may be central to these effects. Recombinant human G1 (rhG1) with an N-terminal 8 amino acid histidine (His) tag, produced in Nicotiana benthamiana, was applied to cultures of dermal fibroblasts, and effects on proliferation and pericellular HA organization determined. rhG1 located to individual strands of cell surface HA which aggregated into structures resembling HA cables. On both individual and aggregated strands, the spacing of attached rhG1 was similar (~120 nm), suggesting interaction between rhG1 molecules. Endogenous V0/V1, present on HA between attached rhG1, did not prevent cable formation, while treatment with V0/V1 alone, which also bound to HA, did not induce cables. A single treatment with rhG1 suppressed cell proliferation for an extended period. Treating cells for 4 weeks with rhG1 resulted in condensed layers of elongated, differentiated α actin-positive fibroblasts, with rhG1 localized to cell surfaces, and a compact extracellular matrix including both collagen and elastin. These results demonstrate that the G1 domain of versican can regulate the organization of pericellular HA and affect phenotype

    Organization of Hyaluronan and Versican in the Extracellular Matrix of Human Fibroblasts Treated With the Viral Mimetic Poly I:C

    No full text
    We have examined structural details of hyaluronan- and versican-rich pericellular matrices in human lung fibroblasts, as well as fixation effects after treatment with the viral mimetic, poly I:C. Lateral aggregation of hyaluronan chains was promoted by acid-ethanol-formalin fixation compared with a network appearance with formalin alone. However, hyaluronidase-sensitive cable structures were seen in live cells, suggesting that they are not a fixation artifact. With all fixatives, versican and hyaluronan probes bound alternately along strands extending from the plasma membrane. However, a yellow colocalization signal required aggregation/overlap of several hyaluronan/versican strands and was more pronounced after acid-ethanol-formalin fixation. In addition to the main cell surface, hyaluronan and versican were also associated with fine actin-positive membrane protrusions, retraction fibers, and surface blebs. After wounding plus treatment with poly I:C, cells displayed larger hyaluronan coats and cable-like structures, as well as more membrane protrusions. However, treated cells did not migrate and had increased stress fibers compared with control wounded cells. Deposition of hyaluronan into cable-like structures in response to poly I:C was diminished but still apparent following actin filament disruption with cytochalasin D, suggesting that the protrusions only partially facilitate cable formation. As seen by scanning electron microscopy, the membrane protrusions may participate in poly I:C–induced binding of monocytes to hyaluronan- and versican-rich matrices. These results suggest that poly I:C–induced hyaluronan- and versican-rich cable structures are not deposited during migration, and that cellular protrusions partially contribute to hyaluronan cable formation. This manuscript contains online supplemental material at http://www.jhc.org. Please visit this article online to view these materials. (J Histochem Cytochem 57:1041–1060, 2009

    Polyinosine-Polycytidylic Acid Stimulates Versican Accumulation in the Extracellular Matrix Promoting Monocyte Adhesion

    No full text
    Viral infections are known to exacerbate asthma and other lung diseases in which chronic inflammatory processes are implicated, but the mechanism is not well understood. The viral mimetic, polyinosine-polycytidylic acid, causes accumulation of a versican- and hyaluronan-enriched extracellular matrix (ECM) by human lung fibroblasts with increased capacity for monocyte adhesion. The fivefold increase in versican retention in this ECM is due to altered compartmentalization, with decreased degradation of cell layer–associated versican, rather than an increase in total accumulation in the culture. This is consistent with decreased mRNA levels for all of the versican splice variants. Reduced versican degradation is further supported by low levels of the epitope, DPEAAE, a product of versican digestion by a disintegrin-like and metallopeptidase with thrombospondin type 1 motif enzymes, in the ECM. The distribution of hyaluronan is similarly altered with a 3.5-fold increase in the cell layer. Pulse–chase studies of radiolabeled hyaluronan show a 50% reduction in the rate of loss from the cell layer over 24 hours. Formation of monocyte-retaining, hyaluronidase-sensitive ECMs can be blocked by the presence of anti-versican antibodies. In comparison, human lung fibroblasts treated with the cytokines, IL-1β plus TNF-α, synthesize increased amounts of hyaluronan, but do not retain it or versican in the ECM, which, in turn, does not retain monocytes. These results highlight an important role for versican in the hyaluronan-dependent binding of monocytes to the ECM of lung fibroblasts stimulated with polyinosine-polycytidylic acid

    Crosstalk between CD4 T cells and synovial fibroblasts from human arthritic joints promotes hyaluronan-dependent leukocyte adhesion and inflammatory cytokine expression in vitro.

    No full text
    The content and organization of hyaluronan (HA) in the extracellular matrix (ECM) have been identified as strong indicators of inflammation in joint disease, although the source and role of HA as an effector of inflammation is not clear. In this study, we established co-cultures of activated human CD4 T cells with fibroblast-like synoviocytes (FLS) from osteoarthritis (OA) and rheumatoid arthritis (RA) subjects and examined the role of HA in promoting inflammatory events. Co-cultures of RA FLS with activated CD4 T cells generated an HA-enriched ECM that promoted enhanced monocyte adhesion compared to co-cultures of OA FLS with activated CD4 T cells. In addition, both OA FLS and RA FLS co-cultures with activated CD4 T cells elicited significant increases in the expression of IL1β, TNF, and IL6, with the increase in IL6 expression most prominent in RA co-cultures. Blocking HA synthesis and accumulation with 4-methylumbelliferone reduced expression of IL6, IL1β, and TNF in both OA FLS and RA FLS co-cultures. The increase in HA synthesis in the co-cultures was mimicked by IL6 trans-signaling of FLS in the absence of CD4 T cells. Inhibition of HA synthesis blocked the increase in IL6 by RA FLS mediated by IL6 trans-signaling, suggesting that the HA synthetic pathway may be a key mediator in IL6 expression by FLS. Overall, our study indicates that HA-enriched ECM generated by co-cultures of activated CD4 T cells with FLS from human joints creates a pathogenic microenvironment by promoting adhesion of leukocytes and expression of inflammatory cytokines including IL6
    corecore