151 research outputs found

    Adult-Onset Ataxia with Neuropathy and White Matter Abnormalities Due to a Novel SAMD9L Variant

    Get PDF
    Variants in tumor suppressor genes and in genes encoding DNA repairing proteins are associated with syndromes conferring neurologic features and increased risk for malignancy. The best example for these conditions is ataxia-telangiectasia (AT). A more rare and recent disease is an ataxia-pancytopenia syndrome (ATXPC) associated with heterozygous gain-of-function variants in the tumor suppressor gene SAMD9L (MIM 159550). Here, we describe a patient with a complex cerebellar syndrome associated with a novel SAMD9L pathogenic variant.publishedVersio

    Haploinsufficiency of RPS14 in 5q− syndrome is associated with deregulation of ribosomal- and translation-related genes

    Get PDF
    We have previously demonstrated haploinsufficiency of the ribosomal gene RPS14, which is required for the maturation of 40S ribosomal subunits and maps to the commonly deleted region, in the 5q− syndrome. Patients with Diamond-Blackfan anaemia (DBA) show haploinsufficiency of the closely related ribosomal protein RPS19, and show a consequent downregulation of multiple ribosomal- and translation-related genes. By analogy with DBA, we have investigated the expression profiles of a large group of ribosomal- and translation-related genes in the CD34+ cells of 15 myelodysplastic syndrome (MDS) patients with 5q− syndrome, 18 MDS patients with refractory anaemia (RA) and a normal karyotype, and 17 healthy controls. In this three-way comparison, 55 of 579 ribosomal- and translation-related probe sets were found to be significantly differentially expressed, with approximately 90% of these showing lower expression levels in the 5q− syndrome patient group. Using hierarchical clustering, patients with the 5q− syndrome could be separated both from other patients with RA and healthy controls solely on the basis of the deregulated expression of ribosomal- and translation-related genes. Patients with the 5q− syndrome have a defect in the expression of genes involved in ribosome biogenesis and in the control of translation, suggesting that the 5q− syndrome represents a disorder of aberrant ribosome biogenesis

    The Role of the Iron Transporter ABCB7 in Refractory Anemia with Ring Sideroblasts

    Get PDF
    Refractory Anemia with Ring Sideroblasts (RARS) is an acquired myelodysplastic syndrome (MDS) characterized by an excess iron accumulation in the mitochondria of erythroblasts. The pathogenesis of RARS and the cause of this unusual pattern of iron deposition remain unknown. We considered that the inherited X-linked sideroblastic anemia with ataxia (XLSA/A) might be informative for the acquired disorder, RARS. XLSA/A is caused by partial inactivating mutations of the ABCB7 ATP-binding cassette transporter gene, which functions to enable transport of iron from the mitochondria to the cytoplasm. Furthermore, ABCB7 gene silencing in HeLa cells causes an accumulation of iron in the mitochondria. We have studied the role of ABCB7 in RARS by DNA sequencing, methylation studies, and gene expression studies in primary CD34+ cells and in cultured erythroblasts. The DNA sequence of the ABCB7 gene is normal in patients with RARS. We have investigated ABCB7 gene expression levels in the CD34+ cells of 122 MDS cases, comprising 35 patients with refractory anemia (RA), 33 patients with RARS and 54 patients with RA with excess blasts (RAEB), and in the CD34+ cells of 16 healthy controls. We found that the expression levels of ABCB7 are significantly lower in the RARS group. RARS is thus characterized by lower levels of ABCB7 gene expression in comparison to other MDS subtypes. Moreover, we find a strong relationship between increasing percentage of bone marrow ring sideroblasts and decreasing ABCB7 gene expression levels. Erythroblast cell cultures confirm the low levels of ABCB7 gene expression levels in RARS. These data provide an important link between inherited and acquired forms of sideroblastic anemia and indicate that ABCB7 is a strong candidate gene for RARS

    Somatic mutations in lymphocytes in patients with immune-mediated aplastic anemia

    Get PDF
    The prevalence and functional impact of somatic mutations in nonleukemic T cells is not well characterized, although clonal T-cell expansions are common. In immune-mediated aplastic anemia (AA), cytotoxic T-cell expansions are shown to participate in disease pathogenesis. We investigated the mutation profiles of T cells in AA by a custom panel of 2533 genes. We sequenced CD4+ and CD8+ T cells of 24 AA patients and compared the results to 20 healthy controls and whole-exome sequencing of 37 patients with AA. Somatic variants were common both in patients and healthy controls but enriched to AA patients' CD8+ T cells, which accumulated most mutations on JAK-STAT and MAPK pathways. Mutation burden was associated with CD8+ T-cell clonality, assessed by T-cell receptor beta sequencing. To understand the effect of mutations, we performed single-cell sequencing of AA patients carrying STAT3 or other mutations in CD8+ T cells. STAT3 mutated clone was cytotoxic, clearly distinguishable from other CD8+ T cells, and attenuated by successful immunosuppressive treatment. Our results suggest that somatic mutations in T cells are common, associate with clonality, and can alter T-cell phenotype, warranting further investigation of their role in the pathogenesis of AA.Peer reviewe

    Labile plasma iron levels predict survival in patients with lower-risk Myelodysplastic syndromes

    Get PDF
    Red blood cell transfusions remain one of the cornerstones in supportive care of lower-risk patients with myelodysplastic syndromes. We hypothesized that patients develop oxidant mediated tissue injury through the formation of toxic iron species, caused either by red blood cell transfusions or by ineffective erythropoiesis. We analyzed serum samples from 100 lower-risk patients with myelodysplastic syndromes at six-month intervals for transferrin saturation, hepcidin-25, growth differentiation factor 15, soluble transferrin receptor, non-transferrin bound iron and labile plasma iron in order to evaluate temporal changes in iron metabolism and presence of potentially toxic iron species and their impact on survival. Hepcidin levels were low in 34 patients with ringed sideroblasts compared to 66 patients without. Increases of hepcidin and non-transferrin bound iron levels were visible early in follow-up of all transfusion dependent patient groups. Hepcidin levels significantly decreased over time in transfusion independent patients with ringed sideroblasts. Increased soluble transferrin receptor levels in transfusion-independent patients with ringed sideroblasts confirmed the presence of ineffective erythropoiesis and suppression of hepcidin production in these patients. Detectable labile plasma iron levels in combination with high transferrin saturation levels occurred almost exclusively in patients with ringed sideroblasts and all transfusion dependent patient groups. Detectable labile plasma iron levels in transfusion dependent patients without ringed sideroblasts were associated with decreased survival. IN CONCLUSION: toxic iron species occurred in all transfusion dependent patients and in transfusion independent patients with ringed sideroblasts. Labile plasma iron appeared to be a clinically relevant measure for potential iron toxicity and a prognostic factor for survival in transfusion dependent patients. This trial was registered at www.clinicaltrials.gov as #NCT00600860

    Impact of spliceosome mutations on RNA splicing in myelodysplasia: dysregulated genes/pathways and clinical associations.

    Get PDF
    SF3B1, SRSF2, and U2AF1 are the most frequently mutated splicing factor genes in the myelodysplastic syndromes (MDS). We have performed a comprehensive and systematic analysis to determine the effect of these commonly mutated splicing factors on pre-mRNA splicing in the bone marrow stem/progenitor cells and in the erythroid and myeloid precursors in splicing factor mutant MDS. Using RNA-seq, we determined the aberrantly spliced genes and dysregulated pathways in CD34+ cells of 84 patients with MDS. Splicing factor mutations result in different alterations in splicing and largely affect different genes, but these converge in common dysregulated pathways and cellular processes, focused on RNA splicing, protein synthesis, and mitochondrial dysfunction, suggesting common mechanisms of action in MDS. Many of these dysregulated pathways and cellular processes can be linked to the known disease pathophysiology associated with splicing factor mutations in MDS, whereas several others have not been previously associated with MDS, such as sirtuin signaling. We identified aberrantly spliced events associated with clinical variables, and isoforms that independently predict survival in MDS and implicate dysregulation of focal adhesion and extracellular exosomes as drivers of poor survival. Aberrantly spliced genes and dysregulated pathways were identified in the MDS-affected lineages in splicing factor mutant MDS. Functional studies demonstrated that knockdown of the mitosis regulators SEPT2 and AKAP8, aberrantly spliced target genes of SF3B1 and SRSF2 mutations, respectively, led to impaired erythroid cell growth and differentiation. This study illuminates the effect of the common spliceosome mutations on the MDS phenotype and provides novel insights into disease pathophysiology

    Prognostic impact of a suboptimal number of analyzed metaphases in normal karyotype lower-risk MDS

    Get PDF
    Conventional karyotype is one of the most relevant prognostic factors in MDS. However, about 50% of patients with MDS have a normal karyotype. Usually, 20-25 normal metaphases (nMP) are considered to be optimal to exclude small abnormal clones which might be associated with poor prognosis. This study evaluated the impact of examining a suboptimal number of metaphases in patients recruited to the EUMDS Registry with low and intermediate-1 risk according to IPSS. Only 179/1049 (17%) of patients with a normal karyotype had a suboptimal number of nMP, defined as less than 20 metaphases analyzed. The outcome (overall survival and progression-free survival) of patients with suboptimal nMP was not inferior to those with higher numbers of analyzed MP both in univariate and multivariate analyses. For patients with an abnormal karyotype, 224/649 (35%) had a suboptimal number of MP assessed, but this did not impact on outcome. For patients with a normal karyotype and suboptimal numbers of analyzable metaphases standard evaluation might be acceptable for general practice, but we recommend additional FISH-analyses or molecular techniques, especially in candidates for intensive interventions

    Novel dynamic outcome indicators and clinical endpoints in myelodysplastic syndrome; the European LeukemiaNet MDS Registry and MDS-RIGHT project perspective

    Get PDF
    Available evidence suggests that in most patients with LR-MDS the risk of death is not related to disease progression but is mainly attributable to non-leukemic death. 2,17 In addition, a proportion of these patients have prolonged survival that precludes the design of clinical trials adopting OS as a primary endpoint. These challenges have resulted in potentially biased assessment of the effectiveness and appropriate use of the available interventions in this patient population. The EUMDS Registry has identified novel meaningful outcome indicators and clinical endpoints, and reliable measures of response to HCI (Figure 4). The results of our analysis indicate that RBCT density is strongly associated with a decreased OS, even at relatively low dose densities. In addition, we observed that an early decrease in platelet count is an independent adverse prognostic indicator in LR-MDS, and combining relative platelet drop and transfusion dependency allows early identification of patients at risk of rapid progression, and may guide early therapeutic interventions, including allogeneic hematopoietic stem cell transplantation or experimental interventions. Taken together, these results indicate that regular RBCT requirement, early platelet count kinetics, and restriction in HRQoL are early independent and meaningful outcome indicators, and reliable measures of effectiveness of therapeutic interventions, evaluated in this set of studies. These findings support the integration of RBCT requirement and HRQoL in the general core outcome sets and in response criteria in patients with LR-MDS, and have important implications for clinical practice and the design of clinical endpoints. Our results strongly support the adoption of freedom from transfusion as a meaningful clinical endpoint in patients with LR-MDS. Anemia is the main determinant of therapeutic intervention in patients with LR-MDS, and ESA are recommended as first-line treatment for patients with symptomatic anemia. 10 The observational studies within the EUMDS Registry showed that the response rate, as well as the capacity of these agents to delay the onset of a regular RBCT need, is most pronounced in RBCT-naïve patients. These results identified early initiation of treatment with ESA as a major treatment response indicator, and indicate that ESA should be recommended in LR-MDS patients with symptomatic anemia before starting regular RBCT. After the onset of RBCT dependency, patients with LR-MDS are prone to long-term accumulation of iron. 1,43 The EUMDS Registry studies provided evidence that elevated LPI levels are associated with reduced survival in RBCT dependent patients, whereas iron chelation therapy normalizes LPI levels. These findings suggest that NTBI and LPI may serve as early indicators of iron toxicity and a means to measure the effectiveness of iron chelation therapy in patients with LR-MDS. However, qualified NTBI and LPI are only currently available in specialized laboratories. 44 Large observational cohorts with detailed clinical and laboratory data, like the EUMDS cohort, are the ideal framework in which to identify well defined MDS subtypes that may benefit from novel targeted treatments. An example of such a subtype is MDS with loss of parts of chromosome 5, namely del5q; these patients have a relatively favorable outcome on lenalidomide treatment. In order to identify homogeneous subsets of patients within MDS, preliminary evidence has suggested that recently identified mutations in splicing factors may recognize distinct disease entities within myeloid neoplasms. 45 Splicing modulators are now in pre-clinical testing, and are very likely to lead to the introduction of effective drugs for specific groups of MDS patients. Luspatercept, a specific inhibitor of growth and differentiation factor-11, a member of the transforming growth factor β superfamily, induced substantial improvement of anemia, especially in patients with ring sideroblasts. 46 Characterization of individual cases by new genetic markers (one of the main objectives of the MDS-RIGHT project) will allow refined classification of patients into biological subgroups that are expected to respond differently to therapeutic interventions to guide discontinuation of those interventions that are less effective or less cost-effective. The main question is whether RCT data and retrospective cohort data in selected tertiary care centers are representative of the 'real world' data of the older patients with LR-MDS in the general population. A careful comparison of the 'real world' data and the RCT data will be needed in order to provide a clear answer to these questions. Meanwhile, the current analyses of data collected over 10 years in the EUMDS Registry provides relevant and important information which could help assess prognosis and response to standard interventions in this older patient group

    Postazacitidine clone size predicts long-term outcome of patients with myelodysplastic syndromes and related myeloid neoplasms

    Get PDF
    Azacitidine is a mainstay of therapy for MDS-related diseases. The purpose of our study is to elucidate the effect of gene mutations on hematological response and overall survival (OS), particularly focusing on their post-treatment clone size. We enrolled a total of 449 patients with MDS or related myeloid neoplasms. They were analyzed for gene mutations in pre- (n=449) and post- (n=289) treatment bone marrow samples using targeted-capture sequencing to assess the impact of gene mutations and their post-treatment clone size on treatment outcomes. In Cox proportional hazard modeling, multi-hit TP53 mutation (HR, 2.03; 95% CI, 1.42-2.91; P<.001), EZH2 mutation (HR, 1.71; 95% CI, 1.14-2.54; P=.009), and DDX41 mutations (HR, 0.33; 95% CI, 0.17-0.62; P<.001), together with age, high-risk karyotypes, low platelet, and high blast counts, independently predicted OS. Post-treatment clone size accounting for all drivers significantly correlated with International Working Group (IWG)-response (P<.001, trend test), except for that of DDX41-mutated clones, which did not predict IWG-response. Combined, IWG-response and post-treatment clone size further improved the prediction of the original model and even that of a recently proposed molecular prediction model, IPSS-M (c-index, 0.653 vs 0.688; P<.001, likelihood ratio test). In conclusion, evaluation of post-treatment clone size, together with pre-treatment mutational profile as well as IWG-response have a role in better prognostication of azacitidine-treated myelodysplasia patients
    corecore