61 research outputs found

    Signaling pathways have an inherent need for noise to acquire information

    Full text link
    Background All living systems acquire information about their environment. At the cellular level, they do so through signaling pathways. Such pathways rely on reversible binding interactions between molecules that detect and transmit the presence of an extracellular cue or signal to the cell’s interior. These interactions are inherently stochastic and thus noisy. On the one hand, noise can cause a signaling pathway to produce the same response for different stimuli, which reduces the amount of information a pathway acquires. On the other hand, in processes such as stochastic resonance, noise can improve the detection of weak stimuli and thus the acquisition of information. It is not clear whether the kinetic parameters that determine a pathway’s operation cause noise to reduce or increase the acquisition of information. Results We analyze how the kinetic properties of the reversible binding interactions used by signaling pathways affect the relationship between noise, the response to a signal, and information acquisition. Our results show that, under a wide range of biologically sensible parameter values, a noisy dynamic of reversible binding interactions is necessary to produce distinct responses to different stimuli. As a consequence, noise is indispensable for the acquisition of information in signaling pathways. Conclusions Our observations go beyond previous work by showing that noise plays a positive role in signaling pathways, demonstrating that noise is essential when such pathways acquire information. Results We analyze how the kinetic properties of the reversible binding interactions used by signaling pathways affect the relationship between noise, the response to a signal, and information acquisition. Our results show that, under a wide range of biologically sensible parameter values, a noisy dynamic of reversible binding interactions is necessary to produce distinct responses to different stimuli. As a consequence, noise is indispensable for the acquisition of information in signaling pathways. Conclusions Our observations go beyond previous work by showing that noise plays a positive role in signaling pathways, demonstrating that noise is essential when such pathways acquire information

    An introduction to modelling flower primordium initiation

    Get PDF
    International audienceIn this chapter we present models of processes involved in the initiation and development of a flower. In the first section, we briefly present models of hormonal transport. We focus on two key aspects of flower development, namely the initiation, due to the periodic local accumulation of auxin (a plant hormone) near at the plant apex, and the genetic regulation of its development. In the first section, we described the main assumptions about auxin transport that have been proposed and tested in the literature. We show how the use of models make it possible to test assumptions expressed in terms of local cell-to-cell interaction rules and to check if they lead to patterning in the growing tissue consistent with observation.Then, we investigated gene regulatory networks that controls the initial steps of flower development and differentiation. In a simplified form, this network contains a dozen of actors interacting with each other in space and time. The understanding of such a complex system here also requires a modeling approach in order to quantify these interactions and analyze their properties. We briefly present the two main formalisms that are used to model GRN: the Boolean and the ODE formalisms. We illustrate on a sub-module of the flower GRN both types of models and discuss their main advantages and drawbacks. We show how manipulations of the network models can be used to make predictions corresponding to possible biological manipulations of the GRN (e.g. loss-of-function mutants).Throughout the chapter, we highlight specific mathematical topics of particular interest to the development of the ideas developed in the different sections in separated boxes (called Math-boxes). The reading of these boxes is relatively independent of the main text

    Single-cell and coupled GRN models of cell patterning in the Arabidopsis thaliana root stem cell niche

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent experimental work has uncovered some of the genetic components required to maintain the <it>Arabidopsis thaliana </it>root stem cell niche (SCN) and its structure. Two main pathways are involved. One pathway depends on the genes <it>SHORTROOT </it>and <it>SCARECROW </it>and the other depends on the <it>PLETHORA </it>genes, which have been proposed to constitute the auxin readouts. Recent evidence suggests that a regulatory circuit, composed of <it>WOX5 </it>and <it>CLE40</it>, also contributes to the SCN maintenance. Yet, we still do not understand how the niche is dynamically maintained and patterned or if the uncovered molecular components are sufficient to recover the observed gene expression configurations that characterize the cell types within the root SCN. Mathematical and computational tools have proven useful in understanding the dynamics of cell differentiation. Hence, to further explore root SCN patterning, we integrated available experimental data into dynamic Gene Regulatory Network (GRN) models and addressed if these are sufficient to attain observed gene expression configurations in the root SCN in a robust and autonomous manner.</p> <p>Results</p> <p>We found that an SCN GRN model based only on experimental data did not reproduce the configurations observed within the root SCN. We developed several alternative GRN models that recover these expected stable gene configurations. Such models incorporate a few additional components and interactions in addition to those that have been uncovered. The recovered configurations are stable to perturbations, and the models are able to recover the observed gene expression profiles of almost all the mutants described so far. However, the robustness of the postulated GRNs is not as high as that of other previously studied networks.</p> <p>Conclusions</p> <p>These models are the first published approximations for a dynamic mechanism of the <it>A. thaliana </it>root SCN cellular pattering. Our model is useful to formally show that the data now available are not sufficient to fully reproduce root SCN organization and genetic profiles. We then highlight some experimental holes that remain to be studied and postulate some novel gene interactions. Finally, we suggest the existence of a generic dynamical motif that can be involved in both plant and animal SCN maintenance.</p

    "Antelope": a hybrid-logic model checker for branching-time Boolean GRN analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In Thomas' formalism for modeling gene regulatory networks (GRNs), <it>branching time</it>, where a state can have <it>more than one possible future</it>, plays a prominent role. By representing a certain degree of unpredictability, branching time can model several important phenomena, such as (a) asynchrony, (b) incompletely specified behavior, and (c) interaction with the environment. Introducing more than one possible future for a state, however, creates a difficulty for ordinary simulators, because <it>infinitely many </it>paths may appear, limiting ordinary simulators to statistical conclusions. <it>Model checkers </it>for branching time, by contrast, are able to prove properties in the presence of infinitely many paths.</p> <p>Results</p> <p>We have developed <it>Antelope </it>("Analysis of Networks through TEmporal-LOgic sPEcifications", <url>http://turing.iimas.unam.mx:8080/AntelopeWEB/</url>), a model checker for analyzing and constructing Boolean GRNs. Currently, software systems for Boolean GRNs use branching time almost exclusively for asynchrony. <it>Antelope</it>, by contrast, also uses branching time for incompletely specified behavior and environment interaction. We show the usefulness of modeling these two phenomena in the development of a Boolean GRN of the <it>Arabidopsis thaliana </it>root stem cell niche.</p> <p>There are two obstacles to a direct approach when applying model checking to Boolean GRN analysis. First, ordinary model checkers normally only verify whether or not a <it>given </it>set of model states has a given property. In comparison, a model checker for Boolean GRNs is preferable if it <it>reports </it>the set of states having a desired property. Second, for efficiency, the expressiveness of many model checkers is limited, resulting in the inability to express some interesting properties of Boolean GRNs.</p> <p><it>Antelope </it>tries to overcome these two drawbacks: Apart from reporting the set of all states having a given property, our model checker can express, at the expense of efficiency, some properties that ordinary model checkers (e.g., NuSMV) cannot. This additional expressiveness is achieved by employing a logic extending the standard Computation-Tree Logic (CTL) with hybrid-logic operators.</p> <p>Conclusions</p> <p>We illustrate the advantages of <it>Antelope </it>when (a) modeling incomplete networks and environment interaction, (b) exhibiting the set of all states having a given property, and (c) representing Boolean GRN properties with hybrid CTL.</p

    Fanconi anemia cells with unrepaired DNA damage activate components of the checkpoint recovery process

    Get PDF
    International audienceBACKGROUND:The FA/BRCA pathway repairs DNA interstrand crosslinks. Mutations in this pathway cause Fanconi anemia (FA), a chromosome instability syndrome with bone marrow failure and cancer predisposition. Upon DNA damage, normal and FA cells inhibit the cell cycle progression, until the G2/M checkpoint is turned off by the checkpoint recovery, which becomes activated when the DNA damage has been repaired. Interestingly, highly damaged FA cells seem to override the G2/M checkpoint. In this study we explored with a Boolean network model and key experiments whether checkpoint recovery activation occurs in FA cells with extensive unrepaired DNA damage.METHODS:We performed synchronous/asynchronous simulations of the FA/BRCA pathway Boolean network model. FA-A and normal lymphoblastoid cell lines were used to study checkpoint and checkpoint recovery activation after DNA damage induction. The experimental approach included flow cytometry cell cycle analysis, cell division tracking, chromosome aberration analysis and gene expression analysis through qRT-PCR and western blot.RESULTS:Computational simulations suggested that in FA mutants checkpoint recovery activity inhibits the checkpoint components despite unrepaired DNA damage, a behavior that we did not observed in wild-type simulations. This result implies that FA cells would eventually reenter the cell cycle after a DNA damage induced G2/M checkpoint arrest, but before the damage has been fixed. We observed that FA-A cells activate the G2/M checkpoint and arrest in G2 phase, but eventually reach mitosis and divide with unrepaired DNA damage, thus resolving the initial checkpoint arrest. Based on our model result we look for ectopic activity of checkpoint recovery components. We found that checkpoint recovery components, such as PLK1, are expressed to a similar extent as normal undamaged cells do, even though FA-A cells harbor highly damaged DNA.CONCLUSIONS:Our results show that FA cells, despite extensive DNA damage, do not loss the capacity to express the transcriptional and protein components of checkpoint recovery that might eventually allow their division with unrepaired DNA damage. This might allow cell survival but increases the genomic instability inherent to FA individuals and promotes cancer

    Cauliflower fractal forms arise from perturbations of floral gene networks

    Get PDF
    [EN] Throughout development, plant meristems regularly produce organs in defined spiral, opposite, or whorl patterns. Cauliflowers present an unusual organ arrangement with a multitude of spirals nested over a wide range of scales. How such a fractal, self-similar organization emerges from developmental mechanisms has remained elusive. Combining experimental analyses in an Arabidopsis thaliana cauliflower-like mutant with modeling, we found that curd self-similarity arises because the meristems fail to form flowers but keep the "memory" of their transient passage in a floral state. Additional mutations affecting meristem growth can induce the production of conical structures reminiscent of the conspicuous fractal Romanesco shape. This study reveals how fractal-like forms may emerge from the combination of key, defined perturbations of floral developmental programs and growth dynamics.This work was supported by the INRAE Caulimodel project (to F.P. and C.Go.); Inria Project Lab Morphogenetics (to C.Go., E.A., and F.P.); the ANR BBSRC Flower model project (to F.P. and C.Go.); the GRAL LabEX (ANR-10-LABX-49-01) within the framework of the CBH-EUR-GS (ANR-17-EURE-0003) (to F.P., G.T., M.L.M., and J.L.); the EU H2020 773875 ROMI project (to C.Go.); and the Spanish Ministerio de Ciencia Innovacion and FEDER (grant no. PGC2018-099232-B-I00 to F.M.).Azpeitia, E.; Tichtinsky, G.; Le Masson, M.; Serrano-Mislata, A.; Lucas, J.; Gregis, V.; Gimenez, C.... (2021). Cauliflower fractal forms arise from perturbations of floral gene networks. Science. 373(6551):1-6. https://doi.org/10.1126/science.abg5999S16373655

    Short Residence Times of DNA-Bound Transcription Factors Can Reduce Gene Expression Noise and Increase the Transmission of Information in a Gene Regulation System

    Get PDF
    Gene expression noise is not just ubiquitous but also variable, and we still do not understand some of the most elementary factors that affect it. Among them is the residence time of a transcription factor (TF) on DNA, the mean time that a DNA-bound TF remains bound. Here, we use a stochastic model of transcriptional regulation to study how residence time affects the gene expression noise that arises when a TF induces gene expression. We find that the effect of residence time on gene expression noise depends on the TF’s concentration and its affinity to DNA, which determine the level of induction of the gene. At high levels of induction, residence time has no effect on gene expression noise. However, as the level of induction decreases, short residence times reduce gene expression noise. The reason is that fast on-off TF binding dynamics prevent long periods where proteins are predominantly synthesized or degraded, which can cause excessive fluctuations in gene expression. As a consequence, short residence times can help a gene regulation system acquire information about the cellular environment it operates in. Our predictions are consistent with the observation that experimentally measured residence times are usually modest and lie between seconds to minutes
    • 

    corecore