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Abstract

In this chapter we present models of processes involved in the initiation and development
of a flower. In the first section, we briefly present models of hormonal transport. We
focus on two key aspects of flower development, namely the initiation, due to the
periodic local accumulation of auxin (a plant hormone) near at the plant apex, and
the genetic regulation of its development. In the first section, we described the main
assumptions about auxin transport that have been proposed and tested in the literature.
We show how the use of models make it possible to test assumptions expressed in terms
of local cell-to-cell interaction rules and to check if they lead to patterning in the growing
tissue consistent with observation.

Then, we investigated gene regulatory networks that controls the initial steps of
flower development and differentiation. In a simplified form, this network contains a
dozen of actors interacting with each other in space and time. The understanding of
such a complex system here also requires a modeling approach in order to quantify these
interactions and analyze their properties. We briefly present the two main formalisms
that are used to model GRN: the Boolean and the ODE formalisms. We illustrate on a
sub-module of the flower GRN both types of models and discuss their main advantages
and drawbacks. We show how manipulations of the network models can be used to
make predictions corresponding to possible biological manipulations of the GRN (e.g.
loss-of-function mutants).

Throughout the chapter, we highlight specific mathematical topics of particular
interest to the development of the ideas developed in the different sections in separated
boxes (called Math-boxes). The reading of these boxes is relatively independent of the
main text.

Keywords: Developmental models, auxin transport, gene regulatory network, flower
initiation, dynamical systems, boolean networks, ordinary differential equations, meris-
tem.
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Chapter 1

Making a flower primordium at the
tip of a plant stem: a modeling
perspective
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1.1 Introduction

A major current challenge in developmental biology is to link gene regulation with shape
development. In the last two decades, the spectacular progresses of molecular biology
and live imaging have made it possible and to observe animal or plant development
in vivo with unprecedented resolution in both space and time. As a consequence, a
wealth of new and key data is now available on the various facets of growth: gene
expression patterns, geometry of tissue at cell resolution, physical properties of tissues
and hormone concentrations, etc.

In the chapter, we will focus on plant development and in particular on the organ
that produces all the other plant organs: the apical meristem. Apical meristems consist
of small domes of cells located at the tip of each axis and containing undifferentiated
cells. Two main types of meristem are usually distinguished, the shoot and the root
apical meristems depending on whether they are at the tip of shoot axes or root axes.
In this chapter, we will focus our attention to shoot apical meristems (SAMs).

Stem cells at the summit of the SAM slowly divide and provide cells to the sur-
rounding peripheral region, where they proliferate rapidly and differentiate into leaf or
flower primordia. Part of these cells give rise to other meristems in a recursive manner,
which makes it possible for the plant to build up branching systems (Figure 1.1, see
also Chapter 3 which provides a detailed biological account of flower formation).

Figure 1.1: Shoot apical meristem of Arabidopsis thaliana (Photo: Jan Traas). At
the tip of the Shoot Apical Meristem (SAM), a dome-like population of stem cells
proliferates. Organs (here flower primordia) are initiated one after the other at the
periphery of this central region, in a spiral pattern where each organ forms an angle of
137◦ approximately with the previous one. At the bottom right of the picture, a young
flower bud is developing and starts itself to produce new lateral organs (here the sepals)

Our aim in this chapter is twofold. We first want to introduce some of the key
processes that participate to the functioning and growth of the shoot apical meristem
and how they are quantified and modeled. To be focused, we chose to draw our attention
to the very moment when an organ is created and a form emerges at the flank of the
meristem dome. We shall investigate this morphogenetic event upstream of primordium
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initiation, where hormonal signals specify the location of the future primordium, and
downstream of organ initiation, where molecular cascades regulating flower development
are triggered. Importantly, our second aim in this chapter is to introduce the researchers
not familiar with the modeling background used to describe these processes with the
mathematical and computational language in a very progressive though precise way.
Overall, our aim is to show how models can be used to better to decipher the complexity
of the observed phenomena and how they make it possible to deduce facts that can be
tested against actual observations.
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1.2 Specifying growth points on meristem domes

After initiation at the SAM, the young flower primordium develops as a growing dome.
This process obviously involves mechanical forces that locally deform the tissue based
on variations stresses in cell walls. The question then arises as to what biophysical
or biochemical processes locally trigger these profound physical changes, upstream of
these deformations.

In the last decades, researchers have identified potential candidates for these factors.
In particular, at the shoot apical meristem, one of the earliest events - may be the
earliest one - that precedes the initiation of a primordium has been shown to be a local
accumulation of the plant hormone auxin [RMK00]. This accumulation is supposed
to induce a cascade of biochemical and biophysical events that locally leads to the
outgrowth of a primordium. Therefore two major questions need be understood from a
morphogenetic point of view: i) what drives the accumulation of auxin in meristems at
precise positions ii) How does the chemical auxin signal is translated into mechanical
instructions that lead to primordium outgrowth ?

The latter question is the subject of active research and debates at the moment
[HHJ+08, PBLG+11, BP13, SAB+14, BKJ14, BCA+15]. The general idea is that auxin
would decrease the rigidity of the cell walls where it accumulates, which in turn would
create a bulge in the tissue at the corresponding position as discussed in the previous
section. We will not enter further in the description of this molecular mechanisms here.

The former question arises at a wider scale in the plant. Auxin is known to be
transported over long distances and the mechanisms that drive this transport have
been studied for decades in different tissues since the pioneering work of Sachs, [Sac72].
Interestingly, to achieve differential accumulation of the hormone in different places,
this transport process needs be very dynamic and thoroughly coordinated at level of the
whole population of cells. As the cells can only interact locally with their immediate
neighbors in the tissue, this coordination must therefore essentially be an emergent
property of this complex cell-to-cell interaction network. To better understand this
phenomenon, researchers have attempted to model the emerging organization of the
auxin transport through the cell network based on different hypothetical cell-to-cell
interaction rules. We are going in the sequel to describe the principles of these models.

1.2.1 Auxin import and export in cells

Auxin refers to a group of small molecules, the most current example of which being the
Indole Acetic Acid (IAA), that can be transported through cells in plant tissues. This
transport is mainly due to the presence in cells of membrane carriers of efflux or influx
that make it possible for auxin to pass through cell membranes, see [KJ10, RSP14] for
general presentations of auxin transport models in plants.

Let us first have a closer look at the general mechanism behind the transport of
auxin molecules through the cell membranes and walls. The principle of this transport
has been proposed in the 70’s by [RS74, Rav75], and is known as the Chemiosmotic
theory, Figure 1.2. In brief, the idea is that auxin exists in two forms in plant tissues, a
neutral protonated form IAAH and an anionic form IAA−. The protonated form can
diffuse freely across the cell wall while the anionic form cannot. The relative propor-
tion of these two forms depends on the medium pH e.g. [KB06]). In the cytoplasm,
whose pH is neutral (pH7.0), auxin is mostly in its anionic form IAA− whereas in the
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acidic apoplast compartment (pH5.5) the neutral form exists in a much higher propor-
tion. Therefore, in the absence of other processes, auxin can passively diffuse from the
apoplastic compartment inside the cells but, then gets trapped in its anionic form in
the cytoplasm. To get out of the cell to the apoplast, the anionic form needs specific
molecular carriers.

This is done by membrane transporter proteins PIN1 of the PINFORMED family.
The PIN1 proteins are putative efflux carriers, i.e. they actively contribute to get
auxin out of the cell to the intercellular compartment (the apoplast). PIN1 proteins
are polarly located in the cell membranes (i.e. at a given moment in time, they are
located on a particular side of the cell). Another family of transporters, the AUX/LAX
proteins, contribute to the transport of auxin from the apoplast into the cell cytoplasm
(AUX/LAX proteins are active influx carriers). They are not polarized in the cell and
usually cover uniformly the surfaces of the cell membranes.

Figure 1.2: auxin transport across cell plasma membranes. In the cytoplasm
with neutral pH, the anionic form largely dominates and can get out of the cell only via
efflux carriers (e.g. PIN1 proteins in red). In the apoplastic compartment, the neutral
form can diffuse freely to the cytoplasm. Additional transport of the anionic form from
the apoplast to the cytoplasm requires an influx carrier (e.g AUX proteins in green).

1.2.2 Auxin flows in the meristem

Now let us consider the question of auxin transport at a larger scale, over an organ or
a particular tissue. Such a coherent long distance transport is due to the possibility
for the cells to coordinate their activities and orient consistently their PIN1 polarities.
In this way, the cells create pathways through the tissue in which auxin is transported
from place to place. In the shoot apical meristem, this dynamic network of PIN1 pumps
is coordinated in such a way that it leads periodically to the creation of small auxin
patches in the L1 layer close to the tip [RPS+03].
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To understand how such a system can work at the level of cell populations, it is useful
to model quantitatively this dynamic transport process. Let us start by modeling auxin
transport for a fixed configuration of the PIN polarity within the cells. The description
of the transport then consists of quantifying the conservation of auxin molecules at any
point of the tissue. Note that for sake of simplicity, we neglect here the action of the
influx transporters of the AUX/LAX family (however, this role may be important to
maintain a certain level of robustness in the patterning, see [KB06, BGB+08]).

Let us formalize this. Consider a meristem tissue made up of a collection of cells i
whose states are defined by a concentration of auxin ai (mol.m−3) and a volume vi. If
there exist PIN proteins polarized in cell i toward neighboring cell n, then we consider
that auxin can be actively exported from cell i to cell n. In this transport network,
processes that may affect the auxin concentration ai of each cell i are of three different
types:

• Transport : Auxin molecules may move within the network of cells. It is usually
considered that this movement has two potential sources (chemiosmotic model):

– passive transport : due to thermal noise, auxin molecules may randomly move
from cell to cell.

– active transport : auxin molecules can be exported outside of the cell by
membrane transporters.

• Synthesis : auxin may be synthesized locally cells.

• Degradation: a percentage of the auxin molecules may be regularly degraded (or
inactivated) within the cell itself.

The variation of auxin concentration in each cell can be modeled by quantifying these
processes and combining their effect in an equation reflecting the conservation of auxin
molecules in the network of cells through space and time. Fluxes in the tissue will make
it possible to quantify the net auxin movement between cells (see Math-Box:Fluxes and
cell concentrations). The rate of change of ai is therefore defined by:

∂ai
∂t

= − 1

vi

∑
n∈Ni

si,nφi→n − δaai + σa, (1.1)

where si,nφi→n is the net flux of auxin from cell i to cell n through the interface
surface si,n, σa (mol.m−3.s−1) is a constant that describes the rate at which auxin is
produced in cells and δa (s−1) defines the rate of auxin degradation. Both constants
are considered here independent of the cell state (no subscript i).
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Relation between fluxes and concentrations of molecules in cells

To compute the net amount of of molecules that enter the cell during a certain
time, one needs to consider the net flux of molecules through the different faces
of the cell.
Let us consider two compartments A and B separated by a membrane of surface
sA,B (m2). We define the flux density φA→B (mol.m−2.s−1) through the surface
sA,B as the net number of molecules that cross the membrane from compartment
A to compartment B per unit surface and per unit time (note that direction A to
B is meaningful here). A positive flux density from A to B means that molecules
are transferred from A to B. Reciprocally, a negative flux means that molecules
are transferred from B to A. The total flux through surface sA,B separating
compartment A and B is then defined by sA,BφA→B.
Based on fluxes, it is easy to compute the net flux Φi of molecules that enter a
cell i per time unit. In a tissue, consider the membrane that separates a cell i
from one of its neighboring cells n, crossed by a flux density φn→i. If si,n denotes
the surface of this membrane, then the net flux that crosses the surface si,n per
time unit is (mol.s−1) :

Φn→i = si,nφn→i, (1.2)

and by summing up on all the interfaces of cell i with other cells n, we get the
total net amount of molecules that entered cell i during a unit time:

Φi =
∑
n∈Ni

si,nφn→i

= −
∑
n∈Ni

si,nφi→n = −
∑
n∈Ni

Φi→n.
(1.3)

Consequently, if we assume that molecules can only remain, move in or out of
cells to their neihgbours, the concentration ai of a particular molecule in cell i of
volume vi will change at rate:

∂ai
∂t

=
Φi

vi

= − 1

vi

∑
n∈Ni

si,nφi→n.
(1.4)

By decomposing the net total flux Φi→n through the membrane between i and n in
a net flux due to diffusion ΦD

i→n and a net flux due to active transport ΦA
i→n, we get:

φi→n = φDi→n + φAi→n, (1.5)

and by replacing φi→n in equation 1.1, it comes:

∂ai
∂t

= − 1

vi

∑
n∈Ni

si,nφ
D
i→n − γa

∑
n∈Ni

si,nφ
A
i→n − δaai + σa. (1.6)
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Let us now make explicit in this equation the diffusion and the active transport
terms. The density of flux due to diffusion between two compartments is classically
assumed to be proportional to the difference of concentrations between these compart-
ments (a particular case of Fick’s First Law) :

φDi→n = γD (ai − an) , (1.7)

where γD is the constant of permeability reflecting the capability of auxin to move
across the membrane (m.s−1).

The net density of flux due to active transport depends on the distribution of carrier
proteins that one can find in membranes on both sides of a given wall between two cells
i and n. A model of this type was originally proposed by Mitchison [Mit80, Mit81] and
makes it possible to express the density of flux through the wall si,j as a function of the
auxin concentration in the neighboring cells:

φAi→n = γA (aipi,n − anpn,i) (1.8)

where γA (m3.mol−1.s−1) characterizes the transport efficiency of the PIN proteins
and pi,n (mol.m−2) is the surfacic concentration of PIN proteins in the membrane of
cell i facing cell n facilitating transport from cell i to cell n.

anai pi,n pn,i
φAi→n

The equation can be interpreted as if each single carrier protein PIN in the wall
would transport γAai molecules of auxin. Since there are pi,n PIN molecules per unit of
surface in the wall, each unit of surface exports γAaipi,n molecules [FMI05]. Equation
1.1 thus becomes:

∂ai
∂t

= −γD
vi

∑
n∈Ni

si,n (ai − an)− γA
vi

∑
n∈Ni

si,n (aipi,n − anpn,i)− δaai + σa, (1.9)

showing on the right member respectively from left to right a term of diffusion, a term
of active transport, a term of auxin decay and a term of auxin synthesis.

Different variants of this model have been used in the literature to simulate auxin
flows in the meristem. A first application was to estimate auxin distribution in meris-
tems based on observed and precise maps of the polar PIN transporters in cells [BdRBCL+06].
Indeed, while auxin concentrations are extremely difficult to measure at cell resolution
(in a cell or a small group of cells), the presence of PIN transporters in cell membrane
can be observed with good accuracy using confocal microscopy. The idea was then
to estimate the auxin distributions in the observed meristem at a given date from the
observed distribution of PIN proteins in confocal images by simulating the transport of
auxin in the observed networks of PIN ”efflux pumps”. This made it possible to confirm
that auxin was indeed accumulating and to predict that, according to the observed dis-
tribution of transporters, auxin should accumulate in the central zone of the meristem
[BdRBCL+06]. This prediction has been confirmed experimentally several years after
with the use of a new auxin sensor [VBF+11].
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Other applications have used variants of this transport model to assess the plausibil-
ity of different assumptions concerning the origin of the observed PIN polarity. Some
of these variants integrate a more detailed description of chemiosmotic model. An
apoplast compartment for instance is added to the previous model and protonated and
non-protonated versions of auxin are distinguished, e.g. [SSJ09]. Other refinement in-
clude the introduction of AUX/LAX influx carriers, e.g. [Kra04], a representation of the
trafficking inside the cell between PIN1 molecules embedded in the plasma membrane
and a pool of ”free” molecules available in the cytoplasm, e.g. [JHS+06, WKVB+10].

In the growing tissue, the PIN distributions are very dynamic. Their allocation
to different membranes of a particular cell can change in an hour, thus leading to a
very plastic and dynamic configuration of the auxin transport network in the meristem.
Here again the processes that drive this dynamic reconfiguration of the network is poorly
understood. However, several hypothesizes have been proposed to explain the various
self-organized patterns of the PIN molecules observed in various plant tissues.

1.2.3 Allocating PIN to cell membranes

While the regulation of PIN polarization is a key determinant of primordium for-
mation, little is known about the underlying biochemical or physical processes. Re-
search on the plausible detailed molecular mechanisms is currently in progress, e.g.
[HHK+10, WKVB+10]. However, at a coarser scale, different hypotheses have been
proposed to interpret the dynamics of PIN carriers in different tissues and their self-
organizing ability. All these mechanisms rely on a positive feedback loop between the
auxin concentration or the auxin flux and the PIN dynamic allocation process.

Concentration-based hypothesis It has been observed in the meristem that auxin
accumulates in small spots close to the tip. Based on GFP labelling of PIN carriers,
a closer inspection of the distribution of the PIN polarities in the corresponding cells
reveals that in these cells, PIN tend to accumulate in the cell on the membrane facing
the center of the spot. As the auxin signal appears to be maximal at the center of the
spot, it has been suggested that the PIN carriers could actually be allocated to the
cell membranes in proportion of the amount of auxin contained in the corresponding
adjacent cells [SGM+06, JHS+06], Figure 1.3.A. This behavior can be captured for
example by the following polarity law [SGM+06]:

pi,n =
si,jb

aj

Z
pi, (1.10)

where pi is the total concentration of PIN molecules in cell i, si,j is the surface separating
cell i and j, b is a parameter controlling the intensity of the influence of cell j on cell i
and aj is the auxin concentration of cell j. Z is a normalizing coefficient, corresponding
to the fact that altogether in a given cell, all the pi,n must sum up to pi:

Z =
∑
j

si,jb
aj , (1.11)

In the concentration-based hypothesis, auxin peaks (if any) are reinforced by their
neighboring cells that orient their PIN pumps towards the peak, against the auxin gradi-
ent. Similarly to Turing reaction-diffusion systems, this system is able to spontaneously
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generate spatial patterns [SGM+06, JHS+06, SSJ09], Figure 1.3.B. A tissue with an ini-
tial uniform auxin distribution and subject to local random fluctuations will break this
spatial symmetry and evolve toward a stable state where the system self-organizes with
spatial motifs corresponding to periodic accumulations of auxin concentration through-
out the tissue (see Figure 1.3.B).

Flux-based hypothesis The concentration-based hypothesis was introduced rather
recently as a means to explain the auxin patterns in the SAM. However, in the 70s,
another feedback mechanism was proposed by T. Sachs to explain the development of
vascular vessels during leaf development [Sac69, Sac00]. Sachs suggested that a positive
feedback in the tissue reinforces and stabilizes existing auxin fluxes. This mechanism
would be able to reconfigure the transport network dynamically in case of obstacles or
wounds and would be responsible for the establisment of veins patterns in leaves. In
1980, Mitchison used quantitative models to show using computer simulations that if
the feedback of the flux on the cell export in the direction of the flux is strong enough,
the system can indeed create canals [Mit80, Mit81]. This so called ”canalization” system
is now recognized as a fairly plausible mechanism of vein formation [RFL+05, SMFB06,
BRB+11], Figure 1.3.C. This canalization system was later revisited by Roland-Lagand
[RLP05] who suggested that the feedback could be mediated by the PIN1 proteins in
plant tissues and by [FMI05] who explored further the mathematical properties of this
dynamical system. In Math-Box Flux-Based Transport: Local properties, we illustrate
the type of mathematical analysis that can be made of such a model and the insights
that may be gained on the system by mathematical derivation.

Formally, it is assumed that the concentration of PIN proteins pi,n in cell i transport-
ing auxin to cell n changes due to i) insertion of PIN proteins in the membrane induced
by the flux ii) a background insertion and iii) removal of PIN1 from the membrane.
The balance between these processes can be captured by the equation:

∂pi,n
∂t

= F (φi→n) + αp − βppi,j, (1.12)

where

F (φi→n) > 0 if φi→n > 0,

= 0 if φi→n ≤ 0. (1.13)

F is a function that expresses how the flux of auxin through a particular membrane
feeds back on the PIN1 allocation to that membrane. Feugier et al. showed that only
super-linear functions (i.e. function that grow faster than the identity function) induce
canals. For example, a quadratic feedback function (F (x) = γpx

2) would lead to:

∂pi,n
∂t

= γpφ
2
i→n + αp − βppi,j,

The feedback generated by superlinear functions is such that, when a cell receives
enough auxin, it switches to a mode where a large efflux through one wall only is
preferred to smaller effluxes through many walls simultaneously (see [Feu06]). This
corresponds to a bifurcation in the dynamical system that switches the system from
a non-canalized to a canalized mode when auxin fluxes are sufficient (see Math-Box
Dynamical Systems in the next section), see Figure 1.3.D. At the tissue level, superlinear
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Figure 1.3: Different hypotheses for the dynamic allocation of PIN molecules to mem-
branes. A. Concentration based hypothesis. Neighboring cells of a cell i are assumed
to have different concentrations of auxin (left: bright green is high concentration, dark
green is low, figures A/C/D reproduced from [SLC+08]). Concentration-based rule
indicates that PINs should be allocated in proportion of the auxin contained in each
neighbor (right) B. Turing-like patterns emerging spontaneously from the concentration-
based (Figure reproduced from [SGM+06]): emergence of auxin peaks due to noise
perturbation of an initially homogeneous concentration. Different wave length can be
acheived depending on the odel parameters (below left panels). Spatial periodicity gen-
erated by the system in 2D (Bottom right panel). C. Flux-Based hypothesis. Yellow
arrows indicate the intensity of the auxin fluxes through the different walls (bigger ar-
row for higher flux). Flux-based rule allocates more PINs to membranes crossed by a
higher flux (right). D. Patterns resulting from flux-based rule: a sink (in blue) attracks
auxin. Two regimes can appear depending on the strength of the feedback function
F : linear function: no-canals are formed (left) super-linear function: canals appear
(right) E. Stress-based hypothesis. Starting from two cells having similar amount of
auxin (left), and assuming that one of the two cells gets higher auxin level (right cell
in brighter green in central left panel), the right cell is thus instructed to grow faster
(central right panel), which puts the cell wall of the left cell in tension and triggers
more allocation of PINs to this wall according to the stress-based rule (right panel).
Note that this mechanism amplifies the concentration differences and thus implements
a concentration-based rule.
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functions thus induce the formation of canals that are believed to be at the origin of
vascular tissues in plants (Figure 1.3.D).

Flux-Based Transport: Local properties

To ease the analysis and get first insight in the model, the system can be simplified
and studied locally. For this, a single cell i is considered and auxin and PIN in its
immediate neighbors are assumed to be negligible (∀n ∈ Ni, an = 0 and pn,i = 0),
though we consider the interface with these neighbors and the distribution of PIN
towards them. In this ”isolated” context the variations of auxin, Eq. (1.9), takes
the simpler form:

∂ai
∂t

= −

(
γD
vi

∑
n∈Ni

si,n

)
ai −

γA
vi

∑
n∈Ni

si,naipi,n − δaai + σa,

which makes it possible to compute the steady state level of auxin (∂ai
∂t

= 0) in
terms of PIN concentration at the different interfaces with neighbors, using the
short-hand notation δ = δa + γD

vi

∑
n∈Ni

si,n.:

ai =
σa

δ + γA
vi

∑
n∈Ni

si,npi,n
.

To determine ai one therefore needs to estimate the values of pi,n for each n ∈ Ni

at the steady state. In the same single-cell context, the equation (1.12) for PIN
variables gives, for each n ∈ Ni:

pi,n = 1
βp
F (pi,nai) +

αp
βp

= 1
βp
F

(
σapi,n

δ + γA
vi

∑
l∈Ni

si,lpi,l

)
+
αp
βp
.

Since ai is entirely determined by the pi,n (see the above expression of ai at
equilibrium), the ”isolated” steady state is given by solving the equation above
for each n ∈ Ni. Interestingly, one particular solution where all pi,n are equal
(pi,n = p for every n ∈ Ni), corresponds to a non-polarized cell. This solution is
given by a fixed point equation:

p = G(p)

with

G(p) = 1
βp
F

(
σap

δ + pγA
vi

∑
l∈Ni

si,l

)
+
αp
βp

This analysis makes it possible to discuss symmetry issues, key to the study of cell
polarization. For example, depending on the exact form of the function F , there
can be other solutions, where the pi,n are not all identical. These solutions are
less symmetric than the former and correspond to cell polarization. In general,
both symmetric and asymmetric solutions co-exist, but only one of them might
be stable (cf. frame ’Dynamical Systems’ in the next section), depending on
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... continued : Flux-Based Transport: Local properties

parameter values, i.e. there exists critical parameter values at which a bifurcation
occurs.
The precise conditions in which this breaking of symmetry occurs, i.e. for which
form of function F and at which parameter values, are not fully known and
constitute a research topic for mathematical modellers.
Another issue related to the symmetry of the problem is due to the fact that since
all pi,n are given by the exact same equation, any ’polar’ solution where PINs are
not all identical is geometrically not completely determinate. For instance, it is
not possible to distinguish between a solution where pi,1 is low on a wall and pi,2
high on another wall and the reverse situation. This ambiguity is in fact resolved
by considering the problem at a larger scale, discussed in the next frame.

Stress-based hypothesis Recently, a strong correlation between the positioning of
PIN molecules and microtubule orientation in cell membranes has been observed in
apical meristems [HHK+10]. This study shows that microtubules are preferentially
oriented parallel to PIN1 positioning in cell membranes. However, the orientation of
microtubules themselves appears to be correlated to mechanical stresses in cell walls
[HHJ+08]. This therefore suggests that the polarized presence of PIN1 in cells could be
a consequence of the local stress variations in cell walls. To interpret these observations,
a model coupling PIN1 allocation to mechanical stresses has been introduced [HHK+10].
In a cell i, this model relates the amount of PIN1 allocated to a membrane facing a
neighboring cell n to the amount of stress, σi,n, existing in the wall between i and n in
a proportional manner:

pi,n = λ1
σmi,n
Z
pi, (1.14)

where pi is the total concentration of PIN molecules in cell i, m is a constant
parameter controlling the relative intensity of the stress feedback in each wall on PIN
allocation to walls, ai is the auxin concentration of cell i, and λ1 is a constant parameter.
Z is a normalizing coefficient, corresponding to the fact that altogether in a given cell,
all the pi,n must sum to pi:

Z = 1 + λ1
∑
n

σmi,n, (1.15)

where the 1 in the right-hand side expression is here to avoid the cancellation of the
denominator when the cell has no stress in its walls.

The model then assumes that the amount of auxin present in a cell modulates the
elastic property of the cell walls: the more auxin, the less rigid the cell walls. This rule
is formalized by the following equation relating the elastic modulus E in cell i’s walls
to the cell’s auxin concentration ai:

E(ai) = Emin +
λ2(Emin − Emax)

λ2 + ari
, (1.16)
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where Emin and Emax are minimal and maximal values of the cell’s elastic modulus
respectively, λ2 is a constant parameter and r is a parameter controling the strength of
the dependence between the wall elasticity and the cell’s auxin concentration.

Hence, if a cell locally gets more auxin than its neighbors (Figure 1.3.E middle left)
the rigidity of its wall is decreased and the cell walls tend to elongate (Figure 1.3.E
middle right). Walls being rigidly connected between cells, this extension induces and
augmentation of stress in the walls of neighboring cells (Figure 1.3.E middle left, blue
arrows). Viewed from the neighboring cell, this corresponds to a differential augmenta-
tion of stress in its wall, which in turn, leads the neighboring cell to allocate more PIN1
molecules to this wall according to equation 1.14 (Figure 1.3.E right). Interestingly, one
can observe that this mechanism is a special case of the concentration-based hypothesis
(see above), where additional hypotheses are made about the mechanism by which the
neighboring cells allocate more auxin on the side the the cell that contains a higher
auxin concentration.

1.2.4 Accumulation of auxin at the meristem surface

These different hypotheses have been used to model the dynamic accumulation of auxin
at the tip of SAMs, upstream of organ formation. Based on additional assumptions,
they all could be used successfully to reproduce spiral phyllotaxis patterns observed in
real Arabidopsis meristems. The concentration-based hypothesis was first shown to be a
plausible explanation of phyllotaxis by two teams independently [SGM+06, JHS+06]. In
these works, auxin transport is modeled in the L1 layer of cells (outermost layer of cells
in the meristem) by assuming that auxin is produced and degraded in every cells and is
transported up-the auxin gradient by PIN1 molecules, according to concentration-based
rules similar to that of equation 1.10. Both models were implemented and simulated
on an artificial growing tissue, including basic rules for cell growth and division. Sim-
ulations showed that phyllotactic patterns of different types, both spiral and whorls,
could be recapitulated from the dynamic models, based on purely local cell to cell in-
teraction rules (here concentration-based rules for PIN1 allocation to membranes, and
auxin transport rules similar to equation 1.9).

The success of these models to reproduce the dynamics of phyllotactic patterns in
the growing meristem raised however a new important question. If such a concentration-
based process is at work to polarize PIN1 proteins in the L1 layer, it is however be-
lieved that veins in plant organs are initiated by canalization processes related to the
flux-based hypothesis. This latter view is supported by a considerable amount of ex-
perimental observations and models [Sac69, Mit80, RLP05, RFL+05, FI06, SMFB06,
WKVB+10]. The picture concerning the dynamic allocation of PIN1 to cell membranes
would then be that a concentration-based process would prevail in the L1 layer to ex-
plain the periodic accumulation of auxin peaks, while a flux-based process would be
involved in other parts of the tissue, where veins are observed. This idea of a combi-
nation between different models in different tissues was developed further in Bayer et
al. who tried to assemble both processes in a single model. For this, the authors as-
sume that both mechanisms (flux- and concentration-based) can be triggered by a cell.
However, the relative importance of each mechanism is controlled by the auxin level of
the cell: at low auxin concentration, the PIN allocation process is dominated by the
concentration-based mechanism, while at high auxin concentrations, it is dominated
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by the flux-based mechanism. In the L1 layer, where levels of auxin are low except in
the newly formed primordia, the concentration-based rule therefore dominates in the
transport process, leading to regular accumulation of auxin at the periphery of the cen-
tral zone. In the incipient primordium however, the accumulation of auxin is maximal
and triggers the flux-based mechanism while weakening accordingly the action of the
concentration-based one (hypothesis of the combined model). Consequently, a flux of
auxin is initiated in the initium downwards, towards the inner tissues, and the flux-
based mechanism builds up a canal from the auxin source (the initium) to the auxin
sink (the inner parts of the tissue). This canal is assumed to initiate the provascular
tissues beneath the new organ. Interestingly, this model predicted that, at the moment
of initiation, just before switching on the flux-based process, a transient polarization
of PIN1 pointing upwards in the inner tissues should be observed. Despite the fact
that such transient phenomena are difficult to capture, this prediction could indeed be
verified on confocal images of tomato and Arabidopsis meristems, [BSM+09].

An alternative approach to this combined model was developed by [SLC+08], based
on the idea that a unique model could possibly be active both at the surface of the
meristem and in the inner layers. Stoma et al. then tested the possibility that a
flux-based mechanism could explain the accumulation of auxin in the L1 layers. They
showed that when primordia are considered to be imperfect sinks for auxin, flux-based
systems can transport auxin against the auxin gradient. They then showed that such a
transport hypothesis can lead to correct phyllotactic patterns and therefore constitute
a plausible transport mechanism in the L1 layer as well. Based on this result, they
showed that a flux-based system could be both used in the L1 layer and in the inner
tissues. However, the authors could not find a unique region in the parameter space
where both L1 fluxes against the gradient and canalization in inner tissues would work
simultaneously. This defect in the parsimony of the approach was later corrected in [?]
who showed that parameters of the flux-based model common to the L1 layer (sink-
driven patterning) and to the inner layers (source driven patterning) can be selected in
order to reproduce both the diffused patterns of PIN polarization in the M1 layer and
the strand patterns in the inner layers.

All the models considered so far have their qualities and deficiencies, and account
to varying degrees of biological facts. Based on our current knowledge of the trans-
port processes, it is not possible to conclude with certainty in favor of any particular
model. In recent years, other related models or variants of the previous models have
been introduced, e.g. [WKVB+10, ABdRS+13] and rely on a refined understanding
of the molecular processes underlying the transport systems. It is no doubt that a
better biological understanding of the molecular and biophysical processes involved
in hormone transport at the SAM will eventually make it possible to progress in the
modeling of hormone transport at the SAM and to eliminate progressively unrealis-
tic hypotheses. However, these models are complex as their global behavior emerges
from local rules of interactions between cells and feedback loops between biochemi-
cal or physical variables. Progress on these models will certainly also require a sys-
tematic analysis and better understanding of their mathematical and formal proper-
ties (steady states, symmetry breaking, bifurcations, network properties, etc.), e.g.
[FMI05, PCS+09, WFTG13, vBdBStT13, FY13, FFM15], see also Math-Box Flux-
Based Transport: Global Constraints below.
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Flux-Based Transport: Global Constraints

The distribution of auxin and PIN at steady state is not only determined by the
local, intra-cellular dynamics (see previous frame), but also by how the fluxes of
auxin combine at the multi-cellular level.
Mathematically, the spatial domain on which auxin transport is studied is a graph
G = (V,E), whose node set V represent cells and edges E ⊂ V × V represent
areas of cell membrane that are at the interface between neighbouring cells.
One important property comes from the fact that

φi→j = −φj→i ,

as follows immediately from the definition φi→j = γD (ai − aj)+γA (aipi,j − ajpj,i).
This properties entails a global constraint: the sum of all fluxes in the tissue must
be zero.
Also, from the relation above and the fact that in Equation (1.12) the function F
is zero for non-positive flux, it follows that at steady state it is always true that
either

pi,j = αP

βP
or pj,i = αP

βP
.

Indeed, the steady state equations are, for any (i, j) ∈ E

pi,j = 1
βP

(F (φi→j) + αP ) and pj,i = 1
βP

(F (φj→i) + αP ) ,

where one of φi→j, φj→i is non-positive. In other terms, at least one of the two
variables pi,j, pj,i must be fixed to the value αP

βP
, while the other one is either at

the same value, or at a higher value (because the function F is non-negative).
This property forces some PIN variables to the low concentration αP

βP
. In the

previous frame, we have seen that within each cell, solving steady state equations
can provide us with the information of ”how many” PIN variables take a given
values, but not which ones exactly. Now that we are considering the whole
tissue, we can see that additional constraints will actually partially resolve this
ambiguity.
One can interpret the situation loosely as follows: each edge (i, j) of the graph G
can be oriented in the direction of the globally constrained flux, which forces one
of the two variables pi,j, pj,i to a low value. In addition, the internal flux within
each cell determine how many ’high PIN walls’ are possible. Every configuration
that simultaneously matches the two constraints, one global and one local, is a
steady state.
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1.3 Modeling the regulation of flower initiation

As we discussed in the previous section, flower primordia are initiated in the SAM due
the self-organized accumulation of auxin at the periphery of the SAM central zone.
This accumulation locally triggers flower development [RMK00] and a cascade of ge-
netic regulation. In this section, we will describe how such regulatory networks can
be modelled and the main mathematical formalisms to achieve models of dynamical
systems (see Math-Box Dynamical systems).

Dynamical Systems: Definitions

As indicated by the term, a dynamical system is a system that evolves in
time. This notion can be formalized mathematically in an abstract way, which
encompasses all the more specific forms that are used in this chapter.
To describe how a system evolves in time, one needs to have a representation
of time, and a representation of the system’s state at a given instant. One also
needs a transformation rule to describe the effect of time on the system’s state.
Mathematically, a dynamical system is nothing more than these three elements:
Definition: A dynamical system is a triple (S, T,Φ) where:

• S is a set, very often endowed with a notion of neighborhood or distance,
called state space.

• T is a set describing time, usually endowed with a notion of order, an
addition rule +, and an origin 0 which is neutral for addition (t+ 0 = t).

• Φ is a map S× T → S which, given a state x ∈ S and a time t ∈ T returns
the new state x′ = Φ(x, t) of the system after a duration t if it is in state
x at t = 0. This evolution operator, also called flow, must satisfy the
following intuitive axioms:

– Φ(x, 0) = x for any state x ∈ S.

– Φ (Φ(x, t), t′) = Φ(x, t+ t′) for any x ∈ S and t, t′ ∈ T .

Although the notion of flow covers all examples of dynamical systems that will
be seen in these lectures, it is not always used explicitly (see Frames ’Dis-
crete/Contiuous Time’). It is still a very useful concept as it allows to define
important notions in a unified way. Such notions include:

• The trajectory (sometimes also called orbit) of a state x is the set of all
past and future states o(x) = {Φ(x, t) : t ∈ T}.

• A steady state is a state that does not change in time: Φ(x, t) = x for all
t. Its trajectory is a single point: o(x) = {x}.

• A periodic trajectory is a trajectory o(x) such that there exists a time
τ ∈ T , called the period, such that Φ(y, τ) = y for any point y ∈ o(x)
(including y = x). Geometrically, o(x) is a closed loop in state space.



22 CONTENTS

... continued : Dynamical Systems: Definitions

• A steady state x (or periodic trajectory o(x)) is called stable if for every
state y close enough to x, the future states Φ(y, t) become arbitrarily close
to o(x) when t → ∞. It is called unstable otherwise, i.e. if one can find
an y arbitrarily close to x such that o(x) and Φ(y, t) do not get close in the
limit t→∞.

1.3.1 Expression patterns in the flower meristem

During its development, the flower meristem is divided in regions, which have differ-
ential gene expression patterns. There are many genes correlated with the different
regions and developmental phases of the flower meristem. However, here we will only
cover the main ones, (for a more comprehensive review see Chapter 3 in this book and
[Cha12, ABBitCPe+10, LTY09]). Inflorescence meristems produce flower primordia at
the axils of cryptic bracts, at points of high auxin concentration ([YWW+13, Cha12]).
The auxin peaks are generated in a phyllotactic pattern created by auxin flux, as de-
scribed above. Then, LEAFY (LFY) and APETALA1 (AP1) expression is established
all over the flower meristem ([RAV+98]). LFY and AP1 are important genes for flower
development and the establishment of the flower meristem identity, since their mu-
tants have several flower defects, which range from late flowering, flower reversion and
flower organ defects, among other things ([MGBSY92, WAS+92]). Later, WUSCHEL
(WUS) and its counterpart, CLAVATA3 (CLV3) are up regulated in the central zone
and the stem cell layers of the flower meristem, respectively. Both genes have dis-
tinctive, central expression patterns and interact in a negative feedback loop which
specifies and maintains a pool of stem cells in the meristem. Mutations in WUS pro-
duce a premature differentiation of the stem cells, while clv3 mutants expand the stem
cell zone ([MSH+98, SLH+00, YTR10]). Finally, the flower meristem will differenti-
ate into 4 annular, concentric zones known as whorls, where the flower organs (sepals,
petals, stamens and carpels) will develop. The control of these whorls is regulated by
three families of genes, called A, B and C, as described in the so-called ABC model
([?]). The A genes, AP1 and APETALA (AP2) define the sepals. A plus B genes (i.e.,
APETALA3 (AP3) and PISTILLATA (PI)) characterize the petals. The C gene, AGA-
MUS (AG), together with B genes define the stamens while C alone defines the carpels
(Fig.1.4 ([CM91, BSM91]). Hence, the presence of different sets of genes, differentially
characterizes the flower meristem spatially and temporally.

So, how do genes dynamically obtain their spatial and temporal expression patterns?
Experimental research has demonstrated that genes interact with each other at many
different levels, including chromatin modifications, physical interaction and transcrip-
tional and posttranscriptional regulation. All these interactions are indispensable to
regulate their spatio-temporal expression patterns.

1.3.2 Modules controlling development

Interestingly, at the beginning of flower development, auxin promotes directly LFY
expression thought its signaling pathway ([YWW+13]). However, it has been clearly
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Figure 1.4: Gene expression patterns during flower transition and development. IM =
Inflorescence meristem and FM = Flower meristem.

Figure 1.5: Graph of the GRN that regulates flower transition and development. Nodes
represent the genes and the edges the interactions among them. Red and green edges
stand for negative and positive interactions, respectively.

demonstrated, that LFY expression, not only depends on auxin concentration. LFY
and AP1 are inhibited by and inhibit TFL1, a negative regulator of flowering time. On
the other hand, AP1 and LFY positively up regulate each other ([RAV+98, RBC99,
LGBP+99, KWMno+10, WABBe+11]). In agreement with this, TFL1 expression is
complementary with AP1 and LFY expression. The expression domains of the latter two
genes greatly overlap within the flower meristem, while TFL1 is exclusively expressed in
the inflorescence meristem [RBC99]. Moreover, AGL24 and SOC1, two flower inducing
genes, positively regulate AP1 and LFY ([GGK12, LCE+08]), and together with AP1,
they act to repress TFL1 ([LTB+13]). Interestingly, while SOC1 and AGL24 regulate
each other positively ([LCE+08]), creating another positive feedback loop, AP1 represses
them ([LZBD+07]). Consequently, AGL24 and SOC1 are down regulated once AP1
expression is established. AGL24 and SOC1 down-regulation is important for flower
development to proceed, given that AGL24 and SOC1 inhibits the SEPALLATA (SEP)
genes, which are important for ABC genes up regulation ([PDB+00, DPR+04]). Once
AGL24 and SOC1 are down-regulated, SEP genes repress TFL1 ([LTB+]).

As flower development continues, still in early flower developmental phases, WUS
and CLV3 expression is up regulated in the flower meristem. WUS and CLV3 form
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a loop, where WUS, non-cell autonomously, up regulates CLV3 while CLV3 inhibits
WUS expression. These regulations create a negative feedback loop, which controls the
size of the stem cell niche and the number of stem cells within it ([MSH+98, SLH+00,
IMOT09]). In the flower meristem, WUS expression is not only important for stem
cell maintenance, but also to induce AG in conjunction with LFY ([LHH+01]). During
flower organ development, AG and AP1 delimit two main regions, since they repress
each other. The B genes expression, which shares a part of its expression domain
with the A genes and another with the C genes, also depends on the expression of
a different set of genes, like UFO ([CTHI08]). Close to the end of flower patterning,
AG turns off WUS. This is an important step to complete and end flower development
(Fig.1.5)([LBJurL01]).

Finally, it is important to note that genes and hormones also communicate. LFY
modifies the metabolism, transport and signaling of auxin ([LZL+13, WABBe+11]).
AP1 modifies gibberellins metabolism and response ([KWMno+10]). Gibberellins also
act as a flowering inductor by promoting genes like SOC1 ([MSL+03]) and LFY expres-
sion ([BGN+98]). And the CLV3/WUS regulatory module interacts with the cytokinin’s
metabolism and signaling pathway ([CGT+12]), indicating that gene and hormonal reg-
ulation are not independent processes.

Due to the high gene interconnectivity, the non-linearity of the gene interactions and
the complexity of the molecular regulation, computational and mathematical models
are necessary to deeply study them in a more integrated way. Many different approaches
can be taken while modelling molecular regulation. Here we will focus on two of the most
used ones, Boolean and ordinary differential equations (ODEs) gene regulatory network
(GRN) models (for a more comprehensive review about GRN modelling formalism see
e.g. ([DJ02]), see Math-Box Mathematical modelling of regulatory networks). Both,
Boolean and ODEs models provide meaningful information about the system dynamics.
Consequently, they have been already employed for a wide variety of systems, including
flower development. For example, a flowering transition GRN has been modeled recently
([JPL+13]) while the flower organ development GRN has been modeled for a long time
with different approaches ([MAB98, ESPLAB04, vMvDdG+10]).

Mathematical modelling of regulatory networks

Mathematically, a network of n genes interacting with each other is represented
by a list (or vector) of n numbers

X = (X1, . . . , Xn) ,

where each Xi represents the level of expression, or activity, or the gene i.
The entries Xi are sometimes continuous, typically interpreted as the concentra-
tion of the mRNA, or protein coded by gene i. This leads to a continuous state
space (see Math-Box ’Dynamical Systems’ above) of the form Rn.
The entries Xi can also be discrete, representing the gene i being transcribed
”Not at all (0), A little (1), A little more (2)...” with a finite number of levels.
The most common case, called Boolean, is when Xi takes only to values 0 (not
transcribed) or 1 (transcribed), with a state space {0, 1}n.
In both cases, referred to as ’continuous’ and ’discrete’ hereafter, the evolution of
the network is defined as a dynamical system (see frames ’Dynamical Systems’).
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... continued : Mathematical modelling of regulatory networks

In the discrete case, one thus needs a successor map

F : {0, 1}n → {0, 1}n.

In the context of gene network modelling, one refers to the flow induced by this
map as synchronous, because this updates all the genes simultaneously at each
time step. An alternative approach, where it is deemed more realistic to update
at most one gene at a given time, is called asynchronous: only one coordinate Fi
of the map F is applied at each time step, all other variables being left unchanged.
A rule has to be introduced to determine which variables are updated (it can be
deterministic or stochastic). It is easy to prove that steady states are identical for
synchronous and asynchronous updates, and are the fixed points of the successor
map F .
In the continuous case, the differential equation describing the system’s dynamics
is usually derived from the laws of chemical kinetics. For simplicity, these laws are
often simplified using ’quasi-steady state assumptions’, whereby some variables
are supposed to evolve so fast that they reach steady state instantly. A standard
form obtained from this assumptions is the so-called Hill function:

h(Xi) =
Xp
i

Xp
i + θpi

,

which rapidly increases near Xi ≈ θi from a plateau h ≈ 0 (when Xi < θi) to a
plateau h ≈ 1 (when Xi < θi). Intuitively, one can see here a connection with
Boolean models. This connection can be made more precise, although this is not
discussed in details in this chapter. The whole system is then described by the
system of ODE

dX

dt
= F (X) = (F1(X), . . . , Fn(X)),

where the jth coordinate Fj is a sum of products of terms of the form h(Xi).

1.3.3 Modelling the genetic regulation of the bud fate

As stated by[Kau69] in the Boolean context, the steady states of a GRN correspond
to the different gene configuration states observed in a biological system. For example,
in the case of the flower meristem, they could correspond to the whorls gene configu-
ration observed experimentally. This hypothesis has been independently corroborated
by different groups (e.g., [AO03, ESPLAB04, JPL+13]).

GRN formalisms

We can build a network using the experimental information about genes interactions
and gene expression patterns presented before. Let us take as an example, the expres-
sion patterns and gene interactions of AP1, LFY and TFL1, which are at the core of
the transition from inflorescence meristem to floral meristem. According to the above
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Figure 1.6: Gene transitions and steady states for the Boolean GRN example. Each
node represents one state of variables TFL1, AP1 and LFY (in this order), and arrows
represent the action of the successor map. The two steady states 011 and 100 are
respectively interpreted as ’flower meristem’ and ’inflorescence meristem’.

description, TFL1 is a negative regulator of AP1 and LFY. LFY and AP1 are negative
regulators of TFL1 and positive regulators of each other (Fig.1.5). This situation can
be formalized in either discrete or continuous time (see Math-Boxes Dynamical systems:
Discrete Time and Dynamical systems: Continuous Time).

In discrete time, Boolean networks are often used as they are the simplest discrete
modelling formalism to study GRN. The successor map is usually defined gene by gene
using logical statements on how these genes are regulated. A possible set of Boolean
functions describing the AP1, LFY, TFL1 network is the following:

TFL1(t+ 1) = !AP1(t)&!LFY (t)

AP1(t+ 1) = !TFL1(t) |LFY (t)

LFY (t+ 1) = !TFL1(t) |AP1(t)

where !, & and | stand for the logical NOT, AND and OR, respectively. The state space
of this system made-up of 3 boolean variables has altogether eight elements (23 = 8). For
each state, one can calculate a successor using the rules above, the resulting successor
map is represented graphically in Figure 1.6. In general, an analogue of this figure can
be produced and recapitulates the complete dynamics of a Boolean GRN model, but
in practice the state space can be too large to perform the full calculation, or represent
it in a readable way. It is usually possible, though, to find the system’s steady states.
In our example, there are two steady states 011 and 100, which correspond to the
’inflorescence meristem’ and ’flower meristem’ identities (Fig.1.6).

One sees in Figure 1.6 that the Boolean representation does not allow for gradual
changes of the variables. In particular, for the chosen rules the ’inflorescence meristem’
state 100 has no predecessor (a situation sometimes referred to as ’garden of Eden’),
so that any perturbation of this state will immediately enter the ’basin of attraction’
of the other steady state. In fact, during plant development, we will transit from
an ’inflorescence meristem’ to a ’flower meristem’ identity. However, this transition
happens only when a new meristem is produced under specific conditions (i.e. high
FT concentration and an auxin peak; see above and chapter 3) and not under any
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type of perturbation. While there are many different way to overcome this and other
limitations of the Boolean modeling approach, one of the best solutions, which gives
a more gradual representation of genes dynamics, capable to overcome many of the
Boolean limitations, is possible through the use of a ODEs model. In this case, the
variables are the concentrations [TFL1], [AP1] and [LFY]. Using Hill functions, a set of
equations analogue to the Boolean model above can be written in the following form:

d[TFL1]

dt
=

θpAP1

[AP1]p + θpAP1

θpLFY
[LFY ]p + θpLFY

− δTFL1[TFL1],

d[AP1]

dt
=

1

2

(
[LFY ]p

[LFY ]p + θpLFY
+

θpTFL1
[TFL1]p + θpTFL1

)
− δAP1[AP1],

d[LFY ]

dt
=

1

2

(
[AP1]p

[AP1]p + θpAP1

+
θpTFL1

[TFL1]p + θpTFL1

)
− δLFY [LFY ],

where δX accounts for the degradation of each of the genes in the network. The
value of the parameters need to be obtained from experiments or estimated. There
are different parameter estimation methods (e.g. [SGH12]). For this example, θX val-
ues, which represent the substrate concentration at which the reaction rate is half its
maximal, was set to 1, all decays δX = 0.3 and the Hill coefficient p = 3. Solving the
system above cannot be achieved by hand any more, but numerical simulations give
steady states which are analogue to the Boolean case Fig.1.8. Importantly, with the
ODEs model, we can observe the expected transitions, from an inflorescence to a flower
meristem identity. However, in the continuous case, the transition can be simulated in a
more realistic way. For example, the transition can be achieved by gradually modifying
the initial TFL1 concentration, as observed in Fig.1.8. At a particular threshold, a
transition is made from a steady state with low TFL1 concentration to a steady state
with high TFL1 concentration. Hence, we can see here that the use of an ODE model
makes it possible to solve two problems: 1) identify perturbations that are able to mod-
ify the steady state of the system and 2) provide plausible mechanisms that reproduce
developmental transitions in a realistic way.

Regulatory networks have usually complex structures and behaviors and cannot
readily be analyzed in a simple qualitative manner. Instead, it is most of the time
necessary to quantify GRNs in order to analyze and understand their properties. It is
not obvious for example that a network such as the one presented in Figure 1.5, built
from different sources of information, would eventually be self-consistent. The use of
models allows us to study such consistencies and analyze emerging properties of the
GNR. In the next section we will how such analyses can be performed with the aid of
a network modeling approach.

Analysis of network properties

As observed from the previous examples, even if we are dealing with a simple network
motif, some interesting properties, like the steady states, can be studied in a systematic
way. Likewise, from the models other network properties can be analyzed in order to
validate, predict or understand the molecular mechanisms. For example, a posterior
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Figure 1.7: Steady states obtained for an over-expression of TFL1.

analysis that we could perform in any biological GRN is a mutant analysis. In both,
continuous and discrete networks, fixing the nodes values to 0 simulates loss-of-function
mutants. While the over expression of a gene is simulated by fixing its value to 1 in the
Boolean case, and to a high value in the continuous case. For example, we could simulate
TFL1 over expression. According to experimental research, TFL1’s over expression
delays LFY and AP1 up regulation, but does not forbid it ([RAV+98]), suggesting that
the positive feedback loop between LFY and AP1 is stronger that TFL1 repression.
When we perform this simulation using the Boolean or the ODEs model, TFL1 over
expression does not forbid the AP1 and LFY upregulation. However, in the Boolean
case we obtain a biologically meaningless cyclic steady state (1.7), which appears due
to their time limitation and synchronous gene updating. In contrast, with the ODEs
modelling approximation we do not obtain any unrealistic cyclic steady state. In fact,
many mutant effects are easier to represent in a continuous framework, and can be used
to determine plausible ranges for the parameters. The list of properties that we can
analyze using GRN model is large, and includes structural (e.g., connectivity, clustering,
network motifs) and dynamical (evolvavility, robustness, stability) properties.

In both the continuous and the discrete case, in the TFL1 over expression simulation,
we find that the steady states with TFL1 and the other with all three genes up regulated
are congruent with the experimental information. Both, steady states and mutant
simulations are important to validate the model. Incongruences between the network
results and the experimental data suggest that the model is incorrect and needs to be
modified.

The use of modeling approaches to understand the molecular mechanisms behind
the developmental processes is necessary. As observed from our examples, even with a
simple network motif, there are some non-trivial behaviours, like the appearance of dif-
ferent steady states and the effect of the mutants. We only used a toy model, however,
many research groups have tried to have a more comprehensive understanding of the
flowering transition and other developmental processes ([MAB98, AO03, ESPLAB04,
vMvDdG+10, CGT+12, JPL+13]). The knowledge generated from this work has pro-
vided insightful and deeper information.

Importantly, with both Boolean and continuous modeling approaches, we can some-
times obtain equivalent information. However, discrete formalisms, including the Boolean
one, are by nature qualitative and there is time is not represented explicitly. Moreover,
in general the update of the network state is synchronous for all the nodes. These lim-
itations can generate artefacts in the network dynamics, like the unrealistic transitory
states described above. We observed for example that, if we start from the state AP1
= 1, LFY = 0 and TFL1 = 1 in the Boolean version of the model, we will pass a tran-
sitory state with AP1 = 0, LFY = 1 and TFL1 = 0 before reaching the steady state



1.3. MODELING THE REGULATION OF FLOWER INITIATION 29

Figure 1.8: Time course for each of the three genes, using the ODE model. Parameters
as given in the text. The colorbar indicate changes in the initial concentration of TFL1,
which is gradually increased from 0 to 4. Low values of TFL1 lead to a steady state
analogue to the Boolean 011, while high values lead to the analogue of 100.

configuration (Fig.1.6). The AP1 down regulation in the transitory state has never
been observed experimentally during flower transition, and in fact, it is not observed
in the continuous version of the model (Fig.1.8), indicating that it is an artefact of the
Boolean formalism.

Thus, even when there are a number of possibilities to overcome discrete modeling
limitations, like translating the Boolean model into a qualitative continues one and using
an asynchronous update of the gene’s values, ODEs models directly override many of
the discrete formalism limitations at the cost of many parameters which are usually
unavailable and need to be estimated. This is the reason why the modeling formalism
must be selected depending on the available data and the research aim. Networks can be
used to study gene dynamics, development robustness, molecular pathways architecture,
to predict missing, wrong or incoherente information, among many other things. They
provide an extremely useful tool for the study of any molecular process.
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Dynamical Systems: Discrete Time

The archetype of discrete time is given by integer numbers, i.e. T = N or Z. In
that case, one can use the flow to define a notion of successor map, denoted
F : S → S. Given a state s, this map returns the new state of the system after
1 unit of time:

F (x) = Φ(x, 1).

Very often, discrete time dynamical systems will be presented directly in terms
of their successor map instead of the flow Φ. If needed, the flow can always be
retrieved by repeatedly applying the successor map: Φ(x, t) = F ◦ F ◦ · · ·F︸ ︷︷ ︸

t times

(x).

Example (Lindenmayer Algae): This system represents the shape of an algae
using a word written with two symbols ’A’ and ’B’. The state space is thus the
set of all words that can be written with these two symbols, denoted {A,B}∗.
The successor map is defined in two steps. First, one introduces the two rules:

A −→ AB
B −→ A

The successor map is the transformation which, given a word w ∈ {A,B}∗ returns
the new word obtained by replacing every occurrence of ’A’ by ’AB’, and then
every occurrence of ’B’ by ’A’.
This system is usually considered only with the initial state ’A’ and not the whole
state space (i.e. one considers a single trajectory and in this case the notion
of stability is not relevant), and defining the flow would introduce unnecessary
complications. �

The previous example has a discrete state space. One can also have a discrete
time and a continuous state space.

Example (logistic map): The logistic map F (x) = λx(1 − x) is a famous
dynamical system, representing the evolution of a population (of size x) in a
medium with limited resources (represented by the term (1− x)).

This system has two steady states 0 and xλ = λ−1
λ

, which are the solutions of
the fixed point equation F (x) = x. One can prove that 0 is stable for 0 < λ ≤ 1
and unstable otherwise. Also, xλ is stable for 1 < λ ≤ 3 and unstable for λ > 3.
In the latter case, the trajectories of this system can become very complicated,
despite its simple formulation. �

The example above illustrates an important concept: a bifurcation occurs when
the number or stability of steady states in a system change for a particular value of
some parameter. A parameter is a number that appears in the formulas defining
a dynamical system and which does not evolve in time (i.e. it is not a variable).
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Dynamical Systems: Continuous Time

The archetype of continuous time is the set of real numbers, i.e. T = R. In this
case, one cannot define a successor, because for any positive time t one can find
a shorter time t′ that would be a nearer successor, and the limit t→ 0 gives the
current time, hence not a successor. However, one knows from calculus that the
following limit makes sense, as the derivative

∂Φ(x, t)

∂t
= lim

dt→0

Φ(x, t+ dt)− Φ(x, t)

dt
.

Continuous time dynamical systems are very often presented in terms of this
derivative, the rate of change of the state. A function F is used as an evolution
rule, providing the rate of change for each state x of the system. This provides
us with a differential equation of the form

∂x

∂t
= F (x).

Then, the notion of flow is identical to the concept of solution of the differential
equation above. Some standard terminology is associated with differential equa-
tions: the state x is usually a vector x = (x1, x2, . . . , xn) of real numbers which
depends on time and space, i.e. it is a function x(X, Y, Z, t) where X, Y, Z are
spatial coordinates. If the right-hand side F (x) involves partial derivatives other
than ∂/∂t (e.g. ∂/∂X, ∂2/∂X2,...) the model is a system of partial differen-
tial equations, abbreviated PDE. Otherwise, one uses the the term ordinary
differential equations, abbreviated ODE, and the notation is slightly altered:

dx

dt
= F (x).

Example (Reaction-Diffusion): The diffusion in space of a substance of con-
centration c(X, Y, Z, t) is modelled by the Laplacian operator (in Cartesian coor-
dinates)

4c =
∂2c

∂X2
+
∂2c

∂Y 2
+
∂2c

∂Z2
.

Alternatively, one may consider a discretized spatial domain, with a finite number
of sites i ∈ {1, ..., N} (for instance cells in a tissue) with concentration ci in site i.
In this framework each site i has a set Ni of neighbours and diffusion is modelled
by

4c =
∑
j∈Ni

(cj − ci)

The notation 4 is ambiguous above but would always be clear in a given context.
When two substances of concentration cA and cB interact chemically and diffuse
in space, their evolution is described by a system of the form:

∂cA
∂t

= F (cA, cB) +DA5 cA

∂cB
∂t

= G(cA, cB) +DB 4 cB



32 CONTENTS

... continued : Dynamical Systems: Continuous Time

where DA and DB are the diffusion rates of the two substances and F,G functions
represent the kinetics of their interactions. This class of model, first proposed by
Alan Turing, is capable of generating a large variety of spatial patterns, modelled
as steady states of the two equations above. The ratio between the two diffusion
rates is often used as a parameter to study bifurcations, which in this context are
interpreted as changes in the spatial patterns of substances A and B.
Note that with a discrete spatial domain, the system above is in fact a system of
ODE and the notation d/dt should be used. �

Remark: With differential equations, steady states can be found by solving a
system of algebraic equations. Indeed, by definition a steady state is such that its
rate of change is zero, i.e. a solution of F (x) = 0. These solutions can sometimes
be computed by hand.
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1.4 Conclusion

In this chapter we have discussed how two key processes in flower primordium forma-
tion can be described and modeled in a quantitative way. In the first section, we briefly
reviewed models that make it possible to explain the dynamic accumulation of auxin at
the SAM. We described the main assumptions about auxin transport that have been
proposed and tested in the literature (concentration-based and flux-based hypotheses).
Models make it possible to check whether these assumptions expressed in terms of lo-
cal cell-to-cell interaction rules lead to consistent patterning in the growing tissue as
emerging properties. When compared to data, each model has its own strengths and
weaknesses. However, in the current state of our knowledge, it is difficult to identify
clearly whether the assumptions underlying a particular transport model are more re-
alistic than that of others. To proceed further, two main avenues must be explored:
i) we first need to get deeper knowledge on the biological processes underlying the
transport between cells. ii) We also need to get better mathematical insight into these
complex models mixing spatial structure, growth, biochemical reactions and feedback
loops between these elements.

Based on the assumption that a flower is initiated at the SAM downstream of auxin
spatial accumulation, we then investigated the gene regulatory network that controls
the initial steps of flower development and differentiation. In a simplified form, this
network contains a dozen of actors interacting with each other in space and time. The
understanding of such a complex system here also requires a modeling approach in
order to quantify these interactions and analyze their properties. We briefly presented
the two main formalisms that are used to model GRN: the Boolean and the ODE
formalisms. We illustrated on a sub-module of the flower GRN both types of models
and discussed their main advantages and drawbacks. We showed how manipulations of
the network models can be used to make predictions corresponding to possible biological
manipulations of the GRN (e.g. loss-of-function mutants).

An integrated view of flower initiation would require to address other important
biological processes. For example, a mechanical model would be required to study how
the flower dome is bulging out from the meristem dome (and recursively how the young
organs such as sepals, petals, are physically emerging from the flower primordium).
Such models are currently being developed (e.g [HHJ+08, BKJ14, BCA+15] and pro-
vide a rigorous basis to quantify further the effect of forces on the shaping of organs.
These models will also need to be coupled, for example by connecting auxin transport
models to gene regulatory networks on realistic 3-dimensional structures obtained from
confocal microscopy (e.g. [FDM+10, BdRRKK+15]). This will make it possible to test
the consistency between several modeling modules in the context of a more integrated
spatio-temporal understanding of flower development. Of course to do so, simplifica-
tions will have to be operated on the detailed models, adaptation between their typical
time and spatial scales will have to be considered. As a result, it will be possible to
compare and assess the output of model simulations with observations of development
in a precise quantitative manner, leading to the possibility to develop further the models
as companion and powerful tools for the study of development.
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