25 research outputs found

    Recent large increases in freshwater fluxes from Greenland into the North Atlantic

    Get PDF
    [1] Freshwater (FW) fluxes from river runoff and precipitation minus evaporation for the pan Arctic seas are relatively well documented and prescribed in ocean GCMs. Fluxes from Greenland on the other hand are generally ignored altogether, despite their potential impacts on ocean circulation and marine biology. Here, we present a reconstruction of the spatially distributed FW flux from Greenland for 1958–2010. We find a modest increase into the Arctic Ocean during this period. Fluxes into the Irminger Basin, however, have increased by fifty percent (6.3 ± 0.5 km3 yr−2) in less than twenty years. This greatly exceeds previous estimates. For the ice sheet as a whole the rate of increase since 1992 is 16.9 ± 1.8 km3 yr−2. The cumulative FW anomaly since 1995 is 3200 ± 358 km3, which is about a third of the magnitude of the Great Salinity Anomaly (GSA) of the 1970s. If this trend continues into the future, the anomaly will exceed that of the GSA by about 2025

    SPATIOTEMPORALCHARACTERISTICSOF EXTREMERAINFALL EVENTS OVER.TAVA ISLAND, INDONESIA

    Get PDF
    The patterns and trends of extreme daily rainfall within period o.f 1981 - 2010 have been analyzed for Java Island, Indonesia particularly East Java Province. A set of extreme indices recommended by WMO were calculated using high quality data fi-om 84 rain stations to express the frequency and intensity of those events. The spatial patterns was identified by mapping climatological mean of indices while temporal trends was assessed using the nonparametric Mann-Kendal test. The study found that the spatial pattern of extreme rainfall events over East Java Province is generally characterized by low frequency and intensity in the coastal area, and high frequency and intensity in the mountainous area: The dominant finding from trend assessment is not-significant trend. However, the consistently significant trend was observed in some districts. Rain stations in District of Ponorogo, Ngawi, Bojonegoro, Gresik and Sumenep showed significant negative trend for almost all indices whereas significant positive trend was found in District of Surabaya and Pasuruan. Key words: spatia-temporal characteristics, extreme rainfall events, Java Islan

    Dynamic rainfall thresholds for landslide early warning in Progo Catchment, Java, Indonesia

    Get PDF
    This study aims to derive and evaluate new empirical rainfall thresholds as the basis for landslide early warning in Progo Catchment, Indonesia, using high-resolution rainfall datasets. Although attempts have been made to determine such thresholds for regions in Indonesia, they used coarse-resolution data and fixed rainfall duration that might not reflect the characteristics of rainfall events that induced the landslides. Therefore, we evaluated gauge-adjusted global satellite mapping of precipitation (GSMaP-GNRT) and bias-corrected climate prediction center morphing method (CMORPH-CRT) hourly rainfall estimates against measurements at rainfall stations. Based on this evaluation, a minimum rainfall of 0.2 mm/h was used to identify rain events, in addition to a minimum of 24 h of consecutive no-rain to separate two rainfall events. Rainfall thresholds were determined at various levels of non-exceedance probability, using accumulated and duration of rainfall events corresponding to 213 landslide occurrences from 2012 to 2021 compiled in this study. Receiver operating characteristics (ROC) analysis showed that thresholds based on rainfall station data, GSMaP-GNRT, and CMORPH-CRT resulted in area under ROC curve values of 0.72, 0.73, and 0.64, respectively. This result indicates that the performance of high-resolution satellite-derived data is comparable to that of ground observations in the Progo Catchment. However, GSMaP-GNRT outperformed CMORPH-CRT in discriminating the occurrence/non-occurrence of landslide-triggering rainfall events. For early warning purposes, the rainfall threshold is selected based on the probability exlevel at which the threshold maximizes the true skill score, i.e., at 10% if based on station data, or at 20% if based on GSMaP-GNRT.</p

    Dutch guideline on total hip prosthesis

    Get PDF
    Contains fulltext : 97840.pdf (publisher's version ) (Open Access

    Melting trends over the Greenland ice sheet (1958–2009) from spaceborne microwave data and regional climate models

    Full text link
    To study near-surface melt changes over the Greenland ice sheet (GrIS) since 1979, melt extent estimates from two regional climate models were compared with those obtained from spaceborne microwave brightness temperatures using two different remote sensing algorithms. The results from the two models were consistent with those obtained with the remote sensing algorithms at both daily and yearly time scales, encouraging the use of the models for analyzing melting trends before the satellite era (1958–1979), when forcing data is available. Differences between satellite-derived and model-simulated results still occur and are used here to identify (i) biases in the snow models (notably in the albedo parametrization, in the thickness of a snow layer, in the maximum liquid water content within the snowpack and in the snowfall impacting the bare ice appearance in summer) and (ii) limitations in the use of passive microwave data for snowmelt detection at the edge of the ice sheet due to mixed pixel effect (e.g., tundra or rock nearby the ice sheet). The results from models and spaceborne microwave sensors confirm a significant (p-value = 0.01) increase in GrIS surface melting since 1979. The melt extent recorded over the last years (1998, 2003, 2005 and 2007) is unprecedented in the last 50 yr with the cumulated melt area in the 2000's being, on the average, twice that of the 1980's

    SPATIOTEMPORAL CHARACTERISTICS OF EXTREME RAINFALL EVENTS OVER JAVA ISLAND, INDONESIA

    No full text
    The patterns and trends of extreme daily rainfall within period of 1981 – 2010 have beenanalyzed for Java Island, Indonesia particularly East Java Province. A set of extreme indicesrecommended by WMO were calculated using high quality data from 84 rain stations toexpress the frequency and intensity of those events. The spatial patterns was identified bymapping climatological mean of indices while temporal trends was assessed using the nonparametricMann-Kendal test. The study found that the spatial pattern of extreme rainfallevents over East Java Province is generally characterized by low frequency and intensity inthe coastal area, and high frequency and intensity in the mountainous area. The dominantfinding from trend assessment is not-significant trend. However, the consistently significanttrend was observed in some districts. Rain stations in District of Ponorogo, Ngawi,Bojonegoro, Gresik and Sumenep showed significant negative trend for almost all indiceswhereas significant positive trend was found in District of Surabaya and Pasuruan

    Assessing the Impact of the Urban Landscape on Extreme Rainfall Characteristics Triggering Flood Hazards

    No full text
    This study configures the Weather Research and Forecasting (WRF) model with the updated urban fraction for optimal rainfall simulation over Kampala, Uganda. The urban parameter values associated with urban fractions are adjusted based on literature reviews. An extreme rainfall event that triggered a flood hazard in Kampala on 25 June 2012 is used for the model simulation. Observed rainfall from two gauging stations and satellite rainfall from Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS) are used for model validation. We compared the simulation using the default urban fraction with the updated urban fraction focusing on extreme rainfall amount and spatial-temporal rainfall distribution. Results indicate that the simulated rainfall is overestimated compared to CHIRPS and underestimated when comparing gridcell values with gauging station records. However, the simulation with updated urban fraction shows relatively better results with a lower absolute relative error score than when using default simulation. Our findings indicated that the WRF model configuration with default urban fraction produces rainfall amount and its spatial distribution outside the city boundary. In contrast, the updated urban fraction has peak rainfall events within the urban catchment boundary, indicating that a proper Numerical Weather Prediction rainfall simulation must consider the urban morphological impact. The satellite-derived urban fraction represents a more realistic urban extent and intensity than the default urban fraction and, thus, produces more realistic rainfall characteristics over the city. The use of explicit urban fractions will be crucial for assessing the effects of spatial differences in the urban morphology within an urban fraction, which is vital for understanding the role of urban green areas on the local climate

    Empirical atmospheric thresholds for debris flows and flash floodsin the southern French Alps

    Get PDF
    Debris flows and flash floods are often preceded by intense, convective rainfall. The establishment of reliable rainfall thresholds is an important component for quantitative hazard and risk assessment, and for the development of an early warning system. Traditional empirical thresholds based on peak intensity, duration and antecedent rainfall can be difficult to verify due to the localized character of the rainfall and the absence of weather radar or sufficiently dense rain gauge networks in mountainous regions. However, convective rainfall can be strongly linked to regional atmospheric patterns and profiles. There is potential to employ this in empirical threshold analysis. This work develops a methodology to determine robust thresholds for flash floods and debris flows utilizing regional atmospheric conditions derived from ECMWF ERA-Interim reanalysis data, comparing the results with rain-gauge-derived thresholds. The method includes selecting the appropriate atmospheric indicators, categorizing the potential thresholds, determining and testing the thresholds. The method is tested in the Ubaye Valley in the southern French Alps (548 km2), which is known to have localized convection triggered debris flows and flash floods. This paper shows that instability of the atmosphere and specific humidity at 700 hPa are the most important atmospheric indicators for debris flows and flash floods in the study area. Furthermore, this paper demonstrates that atmospheric reanalysis data are an important asset, and could replace rainfall measurements in empirical exceedance thresholds for debris flows and flash floods
    corecore