12 research outputs found

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    The Importance of Getting Names Right: The Myth of Markets for Water

    Full text link

    Increasing frailty is associated with higher prevalence and reduced recognition of delirium in older hospitalised inpatients: results of a multi-centre study

    Get PDF
    Purpose: Delirium is a neuropsychiatric disorder delineated by an acute change in cognition, attention, and consciousness. It is common, particularly in older adults, but poorly recognised. Frailty is the accumulation of deficits conferring an increased risk of adverse outcomes. We set out to determine how severity of frailty, as measured using the CFS, affected delirium rates, and recognition in hospitalised older people in the United Kingdom. Methods: Adults over 65 years were included in an observational multi-centre audit across UK hospitals, two prospective rounds, and one retrospective note review. Clinical Frailty Scale (CFS), delirium status, and 30-day outcomes were recorded. Results: The overall prevalence of delirium was 16.3% (483). Patients with delirium were more frail than patients without delirium (median CFS 6 vs 4). The risk of delirium was greater with increasing frailty [OR 2.9 (1.8–4.6) in CFS 4 vs 1–3; OR 12.4 (6.2–24.5) in CFS 8 vs 1–3]. Higher CFS was associated with reduced recognition of delirium (OR of 0.7 (0.3–1.9) in CFS 4 compared to 0.2 (0.1–0.7) in CFS 8). These risks were both independent of age and dementia. Conclusion: We have demonstrated an incremental increase in risk of delirium with increasing frailty. This has important clinical implications, suggesting that frailty may provide a more nuanced measure of vulnerability to delirium and poor outcomes. However, the most frail patients are least likely to have their delirium diagnosed and there is a significant lack of research into the underlying pathophysiology of both of these common geriatric syndromes

    Viscoelastic Hemostatic Assays for Orthopedic Trauma and Elective Procedures

    No full text
    The application of viscoelastic hemostatic assays (VHAs) (e.g., thromboelastography (TEG) and rotational thromboelastometry (ROTEM)) in orthopedics is in its relative infancy when compared with other surgical fields. Fortunately, several recent studies describe the emerging use of VHAs to quickly and reliably analyze the real-time coagulation and fibrinolytic status in both orthopedic trauma and elective orthopedic surgery. Trauma-induced coagulopathy—a spectrum of abnormal coagulation phenotypes including clotting factor depletion, inadequate thrombin generation, platelet dysfunction, and dysregulated fibrinolysis—remains a potentially fatal complication in severely injured and/or hemorrhaging patients whose timely diagnosis and management are aided by the use of VHAs. Furthermore, VHAs are an invaluable compliment to common coagulation tests by facilitating the detection of hypercoagulable states commonly associated with orthopedic injury and postoperative status. The use of VHAs to identify hypercoagulability allows for an accurate venous thromboembolism (VTE) risk assessment and monitoring of VTE prophylaxis. Until now, the data have been insufficient to permit an individualized approach with regard to dosing and duration for VTE thromboprophylaxis. By incorporating VHAs into routine practice, orthopedic surgeons will be better equipped to diagnose and treat the complete spectrum of coagulation abnormalities faced by orthopedic patients. This work serves as an educational primer and up-to-date review of the current literature on the use of VHAs in orthopedic surgery

    Hemorrhagic Resuscitation Guided by Viscoelastography in Far-Forward Combat and Austere Civilian Environments: Goal-Directed Whole-Blood and Blood-Component Therapy Far from the Trauma Center

    Get PDF
    Modern approaches to resuscitation seek to bring patient interventions as close as possible to the initial trauma. In recent decades, fresh or cold-stored whole blood has gained widespread support in multiple settings as the best first agent in resuscitation after massive blood loss. However, whole blood is not a panacea, and while current guidelines promote continued resuscitation with fixed ratios of blood products, the debate about the optimal resuscitation strategy—especially in austere or challenging environments—is by no means settled. In this narrative review, we give a brief history of military resuscitation and how whole blood became the mainstay of initial resuscitation. We then outline the principles of viscoelastic hemostatic assays as well as their adoption for providing goal-directed blood-component therapy in trauma centers. After summarizing the nascent research on the strengths and limitations of viscoelastic platforms in challenging environmental conditions, we conclude with our vision of how these platforms can be deployed in far-forward combat and austere civilian environments to maximize survival

    Screening Antibodies Raised Against the Spike Glycoprotein of SARS-CoV-2 to Support the Development of Rapid Antigen Assays

    No full text
    The spike glycoprotein of SARS-CoV-2 is a highly conserved surface protein and as such may represent a good target for immunoassay detection. We screened a variety of antibodies that were reactive to the S glycoprotein in a highly sensitive liquid immunoassay format and also on paper-based or lateral flow assay (LFA) to assess their analytical performance. Our findings included significant variation in performance when using different sources of S antigen. We identified several antibody pairs that had an LOD of below 10 pg/mL in the liquid immunoassay format with the lowest being 3 pg/mL. The antibodies were highly specific to SARS-Cov-2 based on cross reactivity screening with other human CoVs. The LFA screening found some different optimal antibody pairs from the pool of candidate antibodies used but a several antibodies were observed to have high performance with either immunoassay format.<br /

    Coronal Heating as Determined by the Solar Flare Frequency Distribution Obtained by Aggregating Case Studies

    Full text link
    Flare frequency distributions represent a key approach to addressing one of the largest problems in solar and stellar physics: determining the mechanism that counter-intuitively heats coronae to temperatures that are orders of magnitude hotter than the corresponding photospheres. It is widely accepted that the magnetic field is responsible for the heating, but there are two competing mechanisms that could explain it: nanoflares or Alfv\'en waves. To date, neither can be directly observed. Nanoflares are, by definition, extremely small, but their aggregate energy release could represent a substantial heating mechanism, presuming they are sufficiently abundant. One way to test this presumption is via the flare frequency distribution, which describes how often flares of various energies occur. If the slope of the power law fitting the flare frequency distribution is above a critical threshold, α=2\alpha=2 as established in prior literature, then there should be a sufficient abundance of nanoflares to explain coronal heating. We performed >>600 case studies of solar flares, made possible by an unprecedented number of data analysts via three semesters of an undergraduate physics laboratory course. This allowed us to include two crucial, but nontrivial, analysis methods: pre-flare baseline subtraction and computation of the flare energy, which requires determining flare start and stop times. We aggregated the results of these analyses into a statistical study to determine that α=1.63±0.03\alpha = 1.63 \pm 0.03. This is below the critical threshold, suggesting that Alfv\'en waves are an important driver of coronal heating.Comment: 1,002 authors, 14 pages, 4 figures, 3 tables, published by The Astrophysical Journal on 2023-05-09, volume 948, page 7

    The Group Psychotherapy Literature: 1978

    No full text

    Strategies and performance of the CMS silicon tracker alignment during LHC Run 2

    No full text
    The strategies for and the performance of the CMS silicon tracking system alignment during the 2015–2018 data-taking period of the LHC are described. The alignment procedures during and after data taking are explained. Alignment scenarios are also derived for use in the simulation of the detector response. Systematic effects, related to intrinsic symmetries of the alignment task or to external constraints, are discussed and illustrated for different scenarios
    corecore