65 research outputs found

    Scenes From Tick Physiology: Proteins of Sialome Talk About Their Biological Processes

    Get PDF
    Ticks are blood-sucking parasites with different strategies of feeding depending on the tick family. The major families are Ixodidae or Argasidae, being slow or fast feeders, respectively. In the recent years, the advances in molecular sequencing techniques have enabled to gain knowledge about the proteome of the tick''s salivary glands. But an holistic view of the biological processes underlying the expression of the sialome has been neglected. In this study we propose the use of standard biological processes as a tool to draw the physiology of the tick''s salivary glands. We used published data on the sialome of Rhipicephalus sanguineus s.l. (Ixodidae) and Ornithodoros rostratus (Argasidae). A partial set of proteins obtained by these studies were used to define the biological process(es) in which proteins are involved. We used a directed network construction in which the nodes are proteins (source) and biological processes (target), separately for the low-level processes ("children") and the top-level ones ("parents"). We applied the method to feeding R. sanguineus at different time slices, and to different organs of O. rostratus. The network connects the proteins and the processes with a strength directly proportional to the transcript per millions of each protein. We used PageRank as a measure of the importance of each biological process. As suggested in previous studies, the sialome of unfed R. sanguineus express about 30% less biological processes than feeding ticks. Another decrease (25%) is noticed at the middle of the feeding and before detachment. However, top-level processes are deeply affected only at the onset of feeding, demonstrating a redundancy in the feeding. When ixodid-argasid are compared, large differences were observed: they do not share 91% of proteins, but share 90% of the biological processes. However, caution must be observed when examining these results. The hypothesis of different proteins linked to similar biological process(es) in both ticks is an extreme not confirmed in this study. Considering the limitations of this study, carried out with a selected set of proteins, we propose the networks of proteins of sialome linked to their biological processes as a tool aimed to explain the biological processes behind families of proteins

    Worldwide host associations of the tick genus Ixodes suggest relationships based on environmental sharing rather than on co-phylogenetic events

    Get PDF
    This study aims to capture how ticks of the genus Ixodes gained their hosts using network constructs. We propose two alternative hypotheses, namely, an ecological background (ticks and hosts sharing environmentally available conditions) and a phylogenetic one, in which both partners co-evolved, adapting to existing environmental conditions after the association took place. We used network constructs linking all the known pairs of associations between each species and stage of ticks with families and orders of hosts. Faith’s phylogenetic diversity was used to evaluate the phylogenetic distance of the hosts of each species and changes occurring in the ontogenetic switch between consecutive stages of each species (or the extent of the changes in phylogenetic diversity of hosts for consecutive stages of the same species). We report highly clustered associations among Ixodes ticks and hosts, supporting the influence of the ecological adaptation and coexistence, demonstrating a lack of strict tick-host coevolution in most cases, except for a few species. Keystone hosts do not exist in the relationships between Ixodes and vertebrates because of the high redundancy of the networks, further supporting an ecological relationship between both types of partners. The ontogenetic switch of hosts is high for species with enough data, which is another potential clue supporting the ecological hypothesis. Other results suggest that the networks displaying tick-host associations are different according to the biogeographical realms. Data for the Afrotropical region reveal a lack of extensive surveys, while results for the Australasian region are suggestive of a mass extinction of vertebrates. The Palearctic network is well developed, with many links demonstrating a highly modular set of relationships. With the obvious exceptions of Ixodes species restricted to one or a few hosts, the results point to an ecological adaptation. Even results on species linked to groups of ticks (such as Ixodes uriae and the pelagic birds or the bat-tick species) are suggestive of a previous action of environmental forces.EEA RafaelaFil: Estrada-Peña, Agustin. Faculty of Veterinary Medicine, Department of Animal Health; EspañaFil: Guglielmone, Alberto. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Rafaela; ArgentinaFil: Guglielmone, Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Guglielmone, Alberto. Instituto Nacional de Tecnología Agropecuaria. Instituto de Investigación de la Cadena Láctea (IDICAL); ArgentinaFil: Nava, Santiago. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Rafaela; ArgentinaFil: Nava, Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Nava, Santiago. Instituto Nacional de Tecnología Agropecuaria. Instituto de Investigación de la Cadena Láctea (IDICAL); Argentin

    Species occurrence of ticks in South America, and interactions with biotic and abiotic traits

    Get PDF
    The datasets of records of the distribution of ticks and their hosts are invaluable tools to understand the phylogenetic patterns of evolution of ticks and the abiotic traits to which they are associated. Such datasets require an exhaustive collection of bibliographical references. In most cases, it is necessary the confirmation of reliable identification of ticks, together with an update of the scientific names of the vertebrate hosts. These data are not easily available, because many records were published in the so-called “grey literature”. Herein, we introduced the Dataset of Ticks in South America, a repository that collates data on 4,764 records of ticks (4,124 geo-referenced) with a special reference to an extra 2,370 records of ticks on cattle, together with a set of abiotic traits, curated from satellite-derived information over the complete target region. The dataset includes details of the phylogenetic relationships of the species of hosts, providing researchers with both biotic and abiotic traits that drive the distribution and evolution of ticks in South America.publishersversionpublishe

    Observatorio Geográfico: Salud y Riesgos en México

    Get PDF
    En el año 2017, a vísperas de su culminación se publica el presente libro, en donde se abordan algunos de los temas del observatorio geográfico, cuya base teórica se centra en la Geografía de la salud, que nunca fue tan amplia y diversa en su objetivo como lo es hoy en día, además es un área científica que ha ido prosperando ampliamente en los últimos años y cuyos resultados en la actualidad son cada vez más visibles. Además de ello, el estudio sobre la salud humana ofrece al analista del territorio la oportunidad de aportar conocimiento sobre la distribución espacial de enfermedades importantes que aquejan la sociedad, presentando directamente las desigualdades ante la muerte, la enfermedad y la salud, articulando hechos naturales y sociale

    Crossing the Interspecies Barrier: Opening the Door to Zoonotic Pathogens

    Get PDF
    The number of pathogens known to infect humans is ever increasing. Whether such increase reflects improved surveillance and detection or actual emergence of novel pathogens is unclear. Nonetheless, infectious diseases are the second leading cause of human mortality and disability-adjusted life years lost worldwide [1], [2]. On average, three to four new pathogen species are detected in the human population every year [3]. Most of these emerging pathogens originate from nonhuman animal species

    Systematic errors in temperature estimates from MODIS data covering the western Palearctic and their impact on a parasite development model

    Get PDF
    The modelling of habitat suitability for parasites is a growing area of research due to its association with climate change and ensuing shifts in the distribution of infectious diseases. Such models depend on remote sensing data and require accurate, high-resolution temperature measurements. The temperature is critical for accurate estimation of development rates and potential habitat ranges for a given parasite. The MODIS sensors aboard the Aqua and Terra satellites provide high-resolution temperature data for remote sensing applications. This paper describes comparative analysis of MODIS-derived temperatures relative to ground records of surface temperature in the western Palaearctic. The results show that MODIS overestimated maximum temperature values and underestimated minimum temperatures by up to 5-6 ºC. The combined use of both Aqua and Terra datasets provided the most accurate temperature estimates around latitude 35-44º N, with an overestimation during spring-summer months and an underestimation in autumn-winter. Errors in temperature estimation were associated with specific ecological regions within the target area as well as technical limitations in the temporal and orbital coverage of the satellites (e.g. sensor limitations and satellite transit times). We estimated error propagation of temperature uncertainties in parasite habitat suitability models by comparing outcomes of published models. Error estimates reached 36% of annual respective measurements depending on the model used. Our analysis demonstrates the importance of adequate image processing and points out the limitations of MODIS temperature data as inputs into predictive models concerning parasite lifecycle

    A GIS framework for the assessment of tick impact on human health in a changing climate

    Get PDF
    Abstract. A framework to evaluate the impact of ticks on human health under various scenarios of climate change is proposed. The purpose is not to provide a comprehensive plan (e.g. the economic impact of ticks on human society is not included), instead we wish to describe a series of indices that would be helpful by obtaining homogeneous comparisons of impact and vulnerability exerted by ticks in different regions, countries or continents, using normalized sets of population, vegetation, climate and physical attributes of the territory. Three tick species, i.e. Dermacentor marginatus, Rhipicephalus turanicus and Hyalomma marginatum, have been traced over the territory of Spain to further explain the computation of these indices. The discussion is based on tick habitat suitability, used as a measure of the abiotic (climate) fitness of the habitat for the species in question, and the sensitivity of each tick species to the rate of change of habitat suitability with respect to climate change. The impact is the rate of change in habitat suitability weighted with a fuzzy logic function evaluating the total number of people in an area, percent of rural population and accessibility of the geographical divisions (expressed as hexagons with a 10 km radius) used in the study. The different climate scenarios evaluated in relation to ticks show that the north-western part of Spain would suffer the greatest impact in case the mean temperature would increase, while the Mediterranean region would suffer the highest impact if temperatures decreased. Vulnerability, based on the sanitary structure of the territory and on the impact on human activities due to the change in tick distribution and abundance, is proposed as a measure of adaptation of society t

    Reservoir and vector evolutionary pressures shaped the adaptation of Borrelia

    No full text
    Contribution: Participation in the conception the work and performed data analysisInternational audienceThe life cycle of spirochetes of the genus Borrelia includes complex networks of vertebrates and ticks. The tripartite association of Borrelia-vertebrate-tick has proved ecologically successful for these bacteria, which have become some of the most prominent tick-borne pathogens in the northern hemisphere. To keep evolutionary pace with its double-host life history, Borrelia must adapt to the evolutionary pressures exerted by both sets of hosts. In this review, we attempt to reconcile functional, phylogenetic, and ecological perspectives to propose a coherent scenario of Borrelia evolution. Available empirical information supports that the association of Borrelia with ticks is very old. The major split between the tick families Argasidae-Ixodidae (dated some 230-290 Mya) resulted in most relapsing fever (Rf) species being restricted to Argasidae and few associated with Ixodidae. A further key event produced the diversification of the Lyme borreliosis (Lb) species: the radiation of ticks of the genus Ixodes from the primitive stock of Ixodidae (around 217 Mya). The ecological interactions of Borrelia demonstrate that Argasidae-transmitted Rf species remain restricted to small niches of one tick species and few vertebrates. The evolutionary pressures on this group are consequently low, and speciation processes seem to be driven by geographical isolation. In contrast to Rf, Lb species circulate in nested networks of dozens of tick species and hundreds of vertebrate species. This greater variety confers a remarkably variable pool of evolutionary pressures, resulting in large speciation of the Lb group, where different species adapt to circulate through different groups of vertebrates. Available data, based on ospA and multilocus sequence typing (including eight concatenated in-house genes) phylogenetic trees, suggest that ticks could constitute a secondary bottleneck that contributes to Lb specialization. Both sets of adaptive pressures contribute to the resilience of highly adaptable meta-populations of bacteria

    Could climate trends disrupt the contact rates between Ixodes ricinus (Acari, Ixodidae) and the reservoirs of Borrelia burgdorferi s.l.?

    Get PDF
    This study addresses the modifications that future climate conditions could impose on the transmission cycles of Borrelia burgdorferi s.l. by the tick Ixodes ricinus in Europe. Tracking the distribution of foci of a zoonotic agent transmitted by vectors as climate change shapes its spatial niche is necessary to issue self-protection measures for the human population. We modeled the current distribution of the tick and its predicted contact rates with 18 species of vertebrates known to act as reservoirs of the pathogen. We approached an innovative way for estimating the possibility of permanent foci of Borrelia afzelii or Borrelia garinii tracking separately the expected spatial overlap among ticks and reservoirs for these pathogens in Europe. Environmental traits were obtained from MODIS satellite images for the years 2002-2017 (baseline) and projected on scenarios for the years 2030 and 2050. The ratio between MODIS baseline/current interpolated climatologies (WorldClim), and the ratio between MODIS-projected year 2050 with five climate change scenarios for that year (WorldClim) revealed no significant differences, meaning that projections from MODIS are reliable. Models predict that contact rates between the tick and reservoirs of either B. garinii or B. afzelii are spatially different because those have different habitats overlap. This is expected to promote different distribution patterns because of the different responses of both groups of reservoirs to environmental variables. Models for 2030 predict an increase in latitude, mainly in the circulation of B. garinii, with large areas of expected permanent contact between vector and reservoirs in Nordic countries and central Europe. However, climate projections for the year 2050 predict an unexpected scenario of contact disruption. Though large areas in Europe would be suitable for circulation of the pathogens, the predicted lack of niche overlap among ticks and reservoirs could promote a decrease in permanent foci. This development represents a proof-of-concept for the power of jointly modeling both the vector and reservoirs in a common framework. A deeper understanding of the unanticipated result regarding the year 2050 is needed
    corecore