467 research outputs found

    Properties of iron-modified-by-silver supported on mordenite as catalysts for nox reduction

    Get PDF
    A series of mono and bimetallic catalysts based on a Fe-Ag mixture deposited on mordenite was prepared by ion-exchange and evaluated in the catalytic activity test of the de-NOx reaction in the presence of CO/C3H6. The activity results showed that the most active samples were the Fe-containing ones, and at high temperatures, a co-promoter effect of Ag on the activity of Fe catalysts was also observed. The influence of the order of cation deposition on catalysts formation and their physicochemical properties was studied by FTIR (Fourier Transform Infrared Spectroscopy) of adsorbed NO, XANES (X-ray Absorption Near-Edge Structure), and EXAFS (Extended X-ray Absorption Fine Structure) and discussed in terms of the state of iron. Results of Fe K-edge XANES oscillations showed that, in FeMOR catalysts, iron was present in a disordered state as Fe3+ and Fe2+. In FeAgMOR, the prevailing species was Fe3+, while in the AgFeMOR catalyst, the state of iron was intermediate or mixed between FeMOR and FeAgMOR. The Fe K-edge EXAFS results were characteristic of a disordered phase, the first coordination sphere being asymmetric with two different Fe-O distances. In FeAgMOR and AgFeMOR, coordination of Fe-O was similar to Fe2O3 with a few amount of Fe2+ species. We may conclude that, in the bimetallic FeAgMOR and AgFeMOR samples, a certain amount of tetrahedral Al3+ ions in the mordenite framework is replaced by Fe3+ ions, confirming the previous reports that these species are active sites for the de-NOx reaction. Based on the thermodynamic analysis and experimental data, also, it was confirmed that the order of deposition of the components influenced the mechanism of active sites’ formation during the two steps ion-exchange synthesis

    First results from a multiplexed and massive instrument with sub-electron noise Skipper-CCDs

    Full text link
    We present a new instrument composed of a large number of sub-electron noise Skipper-CCDs operated with a two stage analog multiplexed readout scheme suitable for scaling to thousands of channels. New, thick, 1.351.35 Mpix sensors, from a new foundry, are glued into a Multi-Chip Module (MCM) printed circuit board on a ceramic substrate which has 16 sensors each. The instrument, that can hold up-to 16 MCMs, a total of 256 Skipper-CCD sensors (called a Super-Module with 130\approx 130 grams of active mass and 346346 Mpix), is part of the R&\&D effort of the OSCURA experiment which will have 94\approx 94 super-modules. Experimental results with 1010 MCMs and 160160 Skipper-CCDs sensors are presented in this paper. This is already the largest ever build instrument with single electron sensitivity CCDs using nondestructive readout, both, in terms of active mass and number of channels.Comment: Corrected minor typo

    Results of the engineering run of the coherent neutrino nucleus interaction experiment (CONNIE)

    Get PDF
    The CONNIE detector prototype is operating at a distance of 30 m from the core of a 3.8 GWth nuclear reactor with the goal of establishing Charge-Coupled Devices (CCD) as a new technology for the detection of coherent elastic neutrino-nucleus scattering. We report on the results of the engineering run with an active mass of 4 g of silicon. The CCD array is described, and the performance observed during the first year is discussed. A compact passive shield was deployed around the detector, producing an order of magnitude reduction in the background rate. The remaining background observed during the run was stable, and dominated by internal contamination in the detector packaging materials. The in-situ calibration of the detector using X-ray lines from fluorescence demonstrates good stability of the readout system. The event rates with the reactor ON and OFF are compared, and no excess is observed coming from nuclear fission at the power plant. The upper limit for the neutrino event rate is set two orders of magnitude above the expectations for the standard model. The results demonstrate the cryogenic CCD-based detector can be remotely operated at the reactor site with stable noise below2 e RMS and stable background rates. The success of the engineering test provides a clear path for the upgraded 100 g detector to be deployed during 2016.Fil: Aguilar Arevalo, A.. Universidad Nacional Autónoma de México; MéxicoFil: Bertou, Xavier Pierre Louis. Comisión Nacional de Energía Atómica; Argentina. Comisión Nacional de Energía Atómica. Fundación José A. Balseiro; ArgentinaFil: Bonifazi, C.. Universidade Federal do Rio de Janeiro; BrasilFil: Butner, M.. Fermi National Accelerator Laboratory; Estados UnidosFil: Cancelo, G.. Fermi National Accelerator Laboratory; Estados UnidosFil: Castañeda Vazquez, A.. Universidad Nacional Autónoma de México; MéxicoFil: Cervantes Vergara, B.. Universidad Nacional Autónoma de México; MéxicoFil: Chavez, C. R.. Universidad Nacional de Asunción; ParaguayFil: Da Motta, H.. Centro Brasileiro de Pesquisas Físicas; BrasilFil: D'Olivo, J. C.. Universidad Nacional Autónoma de México; MéxicoFil: Dos Anjos, J.. Centro Brasileiro de Pesquisas Físicas; BrasilFil: Estrada, J.. Fermi National Accelerator Laboratory; Estados UnidosFil: Fernández Moroni, Guillermo. Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras. Instituto ; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Ford, R.. Fermi National Accelerator Laboratory; Estados UnidosFil: Foguel, A.. Centro Brasileiro de Pesquisas Físicas; Brasil. Universidade Federal do Rio de Janeiro; BrasilFil: Hernandez Torres, K. P.. Universidad Nacional Autónoma de México; MéxicoFil: Izraelevitch, F.. Fermi National Accelerator Laboratory; Estados UnidosFil: Kavner, A.. University of Michigan; Estados UnidosFil: Kilminster, B.. Universitat Zurich; SuizaFil: Kuk, K.. Fermi National Accelerator Laboratory; Estados UnidosFil: Lima Jr, H. P.. Centro Brasileiro de Pesquisas Físicas; BrasilFil: Makler, M.. Centro Brasileiro de Pesquisas Físicas; BrasilFil: Molina, J.. Universidad Nacional de Asunción; ParaguayFil: Moreno Granados, G.. Universidad Nacional Autónoma de México; MéxicoFil: Moro, Juan Manuel. Universidad Nacional del Sur. Departamento de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Paolini, Eduardo Emilio. Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras. Instituto ; ArgentinaFil: Sofo Haro, Miguel Francisco. Comision Nacional de Energia Atomica. Gerencia D/area de Energia Nuclear; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Tiffenberg, Javier Sebastian. Fermi National Accelerator Laboratory; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Trillaud, F.. Universidad Nacional Autónoma de México; MéxicoFil: Wagner, S.. Centro Brasileiro de Pesquisas Físicas; Brasil. Pontificia Universidade Católica do Rio Grande do Sul; Brasi

    Search for low-mass WIMPs in a 0.6 kg day exposure of the DAMIC experiment at SNOLAB

    Get PDF
    We present results of a dark matter search performed with a 0.6 kg day exposure of the DAMIC experiment at the SNOLAB underground laboratory. We measure the energy spectrum of ionization events in the bulk silicon of charge-coupled devices down to a signal of 60 eV electron equivalent. The data are consistent with radiogenic backgrounds, and constraints on the spin-independent WIMP-nucleon elastic-scattering cross section are accordingly placed. A region of parameter space relevant to the potential signal from the CDMS-II Si experiment is excluded using the same target for the first time. This result obtained with a limited exposure demonstrates the potential to explore the low-mass WIMP region (<10 GeV/c2c^{2}) of the upcoming DAMIC100, a 100 g detector currently being installed in SNOLAB.Comment: 11 pages, 11 figure

    The temporal expression profile of a Nos3-related natural antisense RNA in the brain suggests a possible role in neurogenesis

    Get PDF
    Experimental work over the past several years has revealed an unexpected abundance of long natural antisense transcripts (NATs) in eukaryotic species. In light of the proposed role of such RNA molecules in the regulation of gene expression in the brain, attention is now focused on specific examples of neuronal NATs. Of particular interest are NATs that are complementary to mRNAs encoding nitric oxide synthase (NOS), the enzyme responsible for production of the important gaseous neurotransmitter nitric oxide (NO). Here we study the temporal expression profile of murine Nos3as NAT in the brain. Notably, Nos3as NAT is known to act as a negative regulator of Nos3 gene expression. The results of our quantitative analysis reveal differential expression of Nos3as NAT during embryonic and post-embryonic stages of development of the brain. Also, they show that the low levels of Nos3as NAT coincides with active neurogenesis. In addition we report on an inverse correlation between the relative expression level of Nos3as NAT and the level of Nos3 protein. Thus our data raise the hypothesis that the Nos3as NAT regulates neurogenesis through suppression of Nos3 gene activity. This idea is further supported by experiments conducted on the olfactory bulbs and cultured neuroblastoma cells

    A boron-coated CCD camera for direct detection of Ultracold Neutrons (UCN)

    Full text link
    A new boron-coated CCD camera is described for direct detection of ultracold neutrons (UCN) through the capture reactions 10^{10}B (n,α\alpha0γ\gamma)7^7Li (6%) and 10^{10}B(n,α\alpha1γ\gamma)7^7Li (94%). The experiments, which extend earlier works using a boron-coated ZnS:Ag scintillator, are based on direct detections of the neutron-capture byproducts in silicon. The high position resolution, energy resolution and particle ID performance of a scientific CCD allows for observation and identification of all the byproducts α\alpha, 7^7Li and γ\gamma (electron recoils). A signal-to-noise improvement on the order of 104^4 over the indirect method has been achieved. Sub-pixel position resolution of a few microns is demonstrated. The technology can also be used to build UCN detectors with an area on the order of 1 m2^2. The combination of micrometer scale spatial resolution, few electrons ionization thresholds and large area paves the way to new research avenues including quantum physics of UCN and high-resolution neutron imaging and spectroscopy.Comment: 10 pages, 8 figure

    The diagnosis of fungal neglected tropical diseases (fungal NTDs) and the role of investigation and laboratory tests: An expert consensus report

    Get PDF
    The diagnosis of fungal Neglected Tropical Diseases (NTD) is primarily based on initial visual recognition of a suspected case followed by confirmatory laboratory testing, which is often limited to specialized facilities. Although molecular and serodiagnostic tools have advanced, a substantial gap remains between the desirable and the practical in endemic settings. To explore this issue further, we conducted a survey of subject matter experts on the optimal diagnostic methods sufficient to initiate treatment in well-equipped versus basic healthcare settings, as well as optimal sampling methods, for three fungal NTDs: mycetoma, chromoblastomycosis, and sporotrichosis. A survey of 23 centres found consensus on the key role of semi-invasive sampling methods such as biopsy diagnosis as compared with swabs or impression smears, and on the importance of histopathology, direct microscopy, and culture for mycetoma and chromoblastomycosis confirmation in well-equipped laboratories. In basic healthcare settings, direct microscopy combined with clinical signs were reported to be the most useful diagnostic indicators to prompt referral for treatment. The survey identified that the diagnosis of sporotrichosis is the most problematic with poor sensitivity across the most widely available laboratory tests except fungal culture, highlighting the need to improve mycological diagnostic capacity and to develop innovative diagnostic solutions. Fungal microscopy and culture are now recognized as WHO essential diagnostic tests and better training in their application will help improve the situation. For mycetoma and sporotrichosis, in particular, advances in identifying specific marker antigens or genomic sequences may pave the way for new laboratory-based or point-of-care tests, although this is a formidable task given the large number of different organisms that can cause fungal NTDs

    Search for coherent elastic neutrino-nucleus scattering at a nuclear reactor with CONNIE 2019 data

    Full text link
    The Coherent Neutrino-Nucleus Interaction Experiment (CONNIE) is taking data at the Angra 2 nuclear reactor with the aim of detecting the coherent elastic scattering of reactor antineutrinos with silicon nuclei using charge-coupled devices (CCDs). In 2019 the experiment operated with a hardware binning applied to the readout stage, leading to lower levels of readout noise and improving the detection threshold down to 50 eV. The results of the analysis of 2019 data are reported here, corresponding to the detector array of 8 CCDs with a fiducial mass of 36.2 g and a total exposure of 2.2 kg-days. The difference between the reactor-on and reactor-off spectra shows no excess at low energies and yields upper limits at 95% confidence level for the neutrino interaction rates. In the lowest-energy range, 50-180 eV, the expected limit stands at 34 (39) times the standard model prediction, while the observed limit is 66 (75) times the standard model prediction with Sarkis (Chavarria) quenching factors.Comment: 23 pages, 14 figure

    Testing Meson Portal Dark Sector Solutions to the MiniBooNE Anomaly at CCM

    Full text link
    A solution to the MiniBooNE excess invoking rare three-body decays of the charged pions and kaons to new states in the MeV mass scale was recently proposed as a dark-sector explanation. This class of solution illuminates the fact that, while the charged pions were focused in the target-mode run, their decay products were isotropically suppressed in the beam-dump-mode run in which no excess was observed. This suggests a new physics solution correlated to the mesonic sector. We investigate an extended set of phenomenological models that can explain the MiniBooNE excess as a dark sector solution, utilizing long-lived particles that might be produced in the three-body decays of the charged mesons and the two-body anomalous decays of the neutral mesons. Over a broad set of interactions with the long-lived particles, we show that these scenarios can be compatible with constraints from LSND, KARMEN, and MicroBooNE, and evaluate the sensitivity of the ongoing and future data taken by the Coherent CAPTAIN Mills experiment (CCM) to a potential discovery in this parameter space.Comment: 15 pages, 14 figures. Planned submission for PR

    The 2020 International Alliance for the Control of Scabies Consensus Criteria for the Diagnosis of Scabies.

    Get PDF
    BACKGROUND: Scabies is a common parasitic skin condition that causes considerable morbidity globally. Clinical and epidemiological research for scabies has been limited by a lack of standardization of diagnostic methods. OBJECTIVES: To develop consensus criteria for the diagnosis of common scabies that could be implemented in a variety of settings. METHODS: Consensus diagnostic criteria were developed through a Delphi study with international experts. Detailed recommendations were collected from the expert panel to define the criteria features and guide their implementation. These comments were then combined with a comprehensive review of the available literature and the opinion of an expanded group of international experts to develop detailed, evidence-based definitions and diagnostic methods. RESULTS: The 2020 International Alliance for the Control of Scabies (IACS) Consensus Criteria for the Diagnosis of Scabies include three levels of diagnostic certainty and eight subcategories. Confirmed scabies (level A) requires direct visualization of the mite or its products. Clinical scabies (level B) and suspected scabies (level C) rely on clinical assessment of signs and symptoms. Evidence-based, consensus methods for microscopy, visualization and clinical symptoms and signs were developed, along with a media library. CONCLUSIONS: The 2020 IACS Criteria represent a pragmatic yet robust set of diagnostic features and methods. The criteria may be implemented in a range of research, public health and clinical settings by selecting the appropriate diagnostic levels and subcategories. These criteria may provide greater consistency and standardization for scabies diagnosis. Validation studies, development of training materials and development of survey methods are now required. What is already known about this topic? The diagnosis of scabies is limited by the lack of accurate, objective tests. Microscopy of skin scrapings can confirm the diagnosis, but it is insensitive, invasive and often impractical. Diagnosis usually relies on clinical assessment, although visualization using dermoscopy is becoming increasingly common. These diagnostic methods have not been standardized, hampering the interpretation of findings from clinical research and epidemiological surveys, and the development of scabies control strategies. What does this study add? International consensus diagnostic criteria for common scabies were developed through a Delphi study with global experts. The 2020 International Alliance for the Control of Scabies (IACS) Criteria categorize diagnosis at three levels of diagnostic certainty (confirmed, clinical and suspected scabies) and eight subcategories, and can be adapted to a range of research and public health settings. Detailed definitions and figures are included to aid training and implementation. The 2020 IACS Criteria may facilitate the standardization of scabies diagnosis
    corecore