First results from a multiplexed and massive instrument with sub-electron noise Skipper-CCDs

Abstract

We present a new instrument composed of a large number of sub-electron noise Skipper-CCDs operated with a two stage analog multiplexed readout scheme suitable for scaling to thousands of channels. New, thick, 1.351.35 Mpix sensors, from a new foundry, are glued into a Multi-Chip Module (MCM) printed circuit board on a ceramic substrate which has 16 sensors each. The instrument, that can hold up-to 16 MCMs, a total of 256 Skipper-CCD sensors (called a Super-Module with ≈130\approx 130 grams of active mass and 346346 Mpix), is part of the R&\&D effort of the OSCURA experiment which will have ≈94\approx 94 super-modules. Experimental results with 1010 MCMs and 160160 Skipper-CCDs sensors are presented in this paper. This is already the largest ever build instrument with single electron sensitivity CCDs using nondestructive readout, both, in terms of active mass and number of channels.Comment: Corrected minor typo

    Similar works

    Full text

    thumbnail-image

    Available Versions