283 research outputs found

    On-sky results of the adaptive optics MACAO for the new IR-spectrograph CRIRES at VLT

    Get PDF
    The adaptive optics MACAO has been implemented in 6 focii of the VLT observatory, in three different flavors. We present in this paper the results obtained during the commissioning of the last of these units, MACAO-CRIRES. CRIRES is a high-resolution spectrograph, which efficiency will be improved by a factor two at least for point-sources observations with a NGS brighter than R=15. During the commissioning, Strehl exceeding 60% have been observed with fair seeing conditions, and a general description of the performance of this curvature adaptive optics system is done.Comment: SPIE conference 2006, Advances in adaptive optics, 12 pages, 11 figure

    Combinatorial effects of Alpha- and Gamma-Protocadherins on neuronal survival and dendritic self-avoidance

    Get PDF
    The clustered Protocadherins (Pcdhs) comprise 58 cadherin-related proteins encoded by three tandemly-arrayed gene clusters, Pcdh-alpha, -beta, and --gamma (Pcdha, Pcdhb, Pcdhg). Pcdh isoforms from different clusters are combinatorially expressed in neurons. They form multimers that interact homophilically, and mediate a variety of developmental processes, including neuronal survival, synaptic maintenance, axonal tiling and dendritic self-avoidance. Most studies have analyzed clusters individually. Here, we assess functional interactions between Pcdha and Pcdhg clusters. To circumvent neonatal lethality associated with deletion of Pcdhgs, we used Crispr-Cas9 genome editing in mice to combine a constitutive Pcdha mutant allele with a conditional Pcdhg allele. We analyzed roles of Pcdhas and Pcdhgs in the retina and cerebellum from mice (both sexes) lacking one or both clusters. In retina, Pcdhgs are essential for survival of inner retinal neurons and dendrite self-avoidance of starburst amacrine cells, while Pcdhas are dispensable for both processes. Deletion of both Pcdha and Pcdhg clusters led to far more dramatic defects in survival and self-avoidance than Pcdhg deletion alone. Comparisons of an allelic series of mutants support the conclusion that Pcdhas and Pcdhgs function together in a dose-dependent and cell-type specific manner to provide a critical threshold of Pcdh activity. In the cerebellum, Pcdhas and Pcdhgs also act synergistically to mediate self-avoidance of Purkinje cell dendrites, with modest but significant defects in either single mutant and dramatic defects in the double mutant. Together, our results demonstrate complex patterns of redundancy between Pcdh clusters and the importance of Pcdh cluster diversity in postnatal CNS development

    Beyond the standard seesaw: neutrino masses from Kahler operators and broken supersymmetry

    Get PDF
    We investigate supersymmetric scenarios in which neutrino masses are generated by effective d=6 operators in the Kahler potential, rather than by the standard d=5 superpotential operator. First, we discuss some general features of such effective operators, also including SUSY-breaking insertions, and compute the relevant renormalization group equations. Contributions to neutrino masses arise at low energy both at the tree level and through finite threshold corrections. In the second part we present simple explicit realizations in which those Kahler operators arise by integrating out heavy SU(2)_W triplets, as in the type II seesaw. Distinct scenarios emerge, depending on the mechanism and the scale of SUSY-breaking mediation. In particular, we propose an appealing and economical picture in which the heavy seesaw mediators are also messengers of SUSY breaking. In this case, strong correlations exist among neutrino parameters, sparticle and Higgs masses, as well as lepton flavour violating processes. Hence, this scenario can be tested at high-energy colliders, such as the LHC, and at lower energy experiments that measure neutrino parameters or search for rare lepton decays.Comment: LaTeX, 34 pages; some corrections in Section

    Production of Native Bispecific Antibodies in Rabbits

    Get PDF
    BACKGROUND: A natural bispecific antibody, which can be produced by exchanging Fab arms of two IgG4 molecules, was first described in allergic patients receiving therapeutic injections with two distinct allergens. However, no information has been published on the production of natural bispecific antibody in animals. Even more important, establishment of an animal model is a useful approach to investigate and characterize the naturally occurring antibody. METHODOLOGY/PRINCIPAL FINDINGS: We demonstrated that a natural bispecific antibody can also be generated in New Zealand white rabbits by immunization with synthesized conjugates. These antibodies showed bispecificity to the components that were simultaneously used to immunize the animals. We observed a trend in our test animals that female rabbits exhibited stronger bispecific antibody responses than males. The bispecific antibody was monomeric and primarily belonged to immunoglobulin (Ig) G. Moreover, bispecific antibodies were demonstrated by mixing 2 purified monospecific antibodies in vivo and in vitro. CONCLUSIONS/SIGNIFICANCE: Our results extend the context of natural bispecific antibodies on the basis of bispecific IgG4, and may provide insights into the exploration of native bispecific antibodies in immunological diseases

    Constrained SUSY seesaws with a 125 GeV Higgs

    Get PDF
    Motivated by the ATLAS and CMS discovery of a Higgs-like boson with a mass around 125 GeV, and by the need of explaining neutrino masses, we analyse the three canonical SUSY versions of the seesaw mechanism (type I, II and III) with CMSSM boundary conditions. In type II and III cases, SUSY particles are lighter than in the CMSSM (or the constrained type I seesaw), for the same set of input parameters at the universality scale. Thus, to explain mh0≃125GeVm_{h^0} \simeq 125 GeV at low energies, one is forced into regions of parameter space with very large values of m0m_0, M1/2M_{1/2} or A0A_0. We compare the squark and gluino masses allowed by the ATLAS and CMS ranges for mh0m_{h^0} (extracted from the 2011-2012 data), and discuss the possibility of distinguishing seesaw models in view of future results on SUSY searches. In particular, we briefly comment on the discovery potential of LHC upgrades, for squark/gluino mass ranges required by present Higgs mass constraints. A discrimination between different seesaw models cannot rely on the Higgs mass data alone, therefore we also take into account the MEG upper limit on BR(μ→eγ)(\mu \to e \gamma) and show that, in some cases, this may help to restrict the SUSY parameter space, as well as to set complementary limits on the seesaw scale.Comment: 28 pages, 7 figures. v2: comments and references added. Final version to appear in JHE

    Innate Immune Response to Rift Valley Fever Virus in Goats

    Get PDF
    Rift Valley fever (RVF), a re-emerging mosquito-borne disease of ruminants and man, was endemic in Africa but spread to Saudi Arabia and Yemen, meaning it could spread even further. Little is known about innate and cell-mediated immunity to RVF virus (RVFV) in ruminants, which is knowledge required for adequate vaccine trials. We therefore studied these aspects in experimentally infected goats. We also compared RVFV grown in an insect cell-line and that grown in a mammalian cell-line for differences in the course of infection. Goats developed viremia one day post infection (DPI), which lasted three to four days and some goats had transient fever coinciding with peak viremia. Up to 4% of peripheral blood mononuclear cells (PBMCs) were positive for RVFV. Monocytes and dendritic cells in PBMCs declined possibly from being directly infected with virus as suggested by in vitro exposure. Infected goats produced serum IFN-γ, IL-12 and other proinflammatory cytokines but not IFN-α. Despite the lack of IFN-α, innate immunity via the IL-12 to IFN-γ circuit possibly contributed to early protection against RVFV since neutralising antibodies were detected after viremia had cleared. The course of infection with insect cell-derived RVFV (IN-RVFV) appeared to be different from mammalian cell-derived RVFV (MAM-RVFV), with the former attaining peak viremia faster, inducing fever and profoundly affecting specific immune cell subpopulations. This indicated possible differences in infections of ruminants acquired from mosquito bites relative to those due to contact with infectious material from other animals. These differences need to be considered when testing RVF vaccines in laboratory settings
    • …
    corecore