354 research outputs found

    The roles of the classical and alternative nuclear factor-kappaB pathways: potential implications for autoimmunity and rheumatoid arthritis

    Get PDF
    Nuclear factor-κB (NF-κB) is an inducible transcription factor controlled by two principal signaling cascades, each activated by a set of signal ligands: the classical/canonical NF-κB activation pathway and the alternative/noncanonical pathway. The former pathway proceeds via phosphorylation and degradation of inhibitor of NF-κB (IκB) and leads most commonly to activation of the heterodimer RelA/NF-κB1(p50). The latter pathway proceeds via phosphorylation and proteolytic processing of NF-κB2 (p100) and leads to activation, most commonly, of the heterodimer RelB/NF-κB2 (p52). Both pathways play critical roles at multiple levels of the immune system in both health and disease, including the autoimmune inflammatory response. These roles include cell cycle progression, cell survival, adhesion, and inhibition of apoptosis. NF-κB is constitutively activated in many autoimmune diseases, including diabetes type 1, systemic lupus erythematosus, and rheumatoid arthritis (RA). In this review we survey recent developments in the involvement of the classical and alternative pathways of NF-κB activation in autoimmunity, focusing particularly on RA. We discuss the involvement of NF-κB in self-reactive T and B lymphocyte development, survival and proliferation, and the maintenance of chronic inflammation due to cytokines such as tumor necrosis factor-α, IL-1, IL-6, and IL-8. We discuss the roles played by IL-17 and T-helper-17 cells in the inflammatory process; in the activation, maturation, and proliferation of RA fibroblast-like synovial cells; and differentiation and activation of osteoclast bone-resorbing activity. The prospects of therapeutic intervention to block activation of the NF-κB signaling pathways in RA are also discussed

    Detection of microbial contamination in potable water by Nanowire technology

    Get PDF
    It is well known that the lack of control and sanitation of water in developing countries has cause very significant epidemiological events. In the last decades the situation of water supplies and sanitation has improve all over the world. Despite of it, in the European Union there are a considerable number of confirmed cases of water-borne infections even though the restrictive law. Electronic Noses (ENs) has shown to be a very effective and fast tool for monitoring microbiological spoilage and quality control. The aim of this study was test the ability of a novel EN for the detection of bacterial presence in potable water in cooperation with analytical (pH) and optical (photometer) techniques. The achieved results notably advocate the use of EN in industry laboratories as a very important tool in water quality control

    Tcf7l2 plays pleiotropic roles in the control of glucose homeostasis, pancreas morphology, vascularization and regeneration

    Get PDF
    Type 2 diabetes (T2D) is a disease characterized by impaired insulin secretion. The Wnt signaling transcription factor Tcf7l2 is to date the T2D-associated gene with the largest effect on disease susceptibility. However, the mechanisms by which TCF7L2 variants affect insulin release from \u3b2-cells are not yet fully understood. By taking advantage of a tcf7l2 zebrafish mutant line, we first show that these animals are characterized by hyperglycemia and impaired islet development. Moreover, we demonstrate that the zebrafish tcf7l2 gene is highly expressed in the exocrine pancreas, suggesting potential bystander effects on \u3b2-cell growth, differentiation and regeneration. Finally, we describe a peculiar vascular phenotype in tcf7l2 mutant larvae, characterized by significant reduction in the average number and diameter of pancreatic islet capillaries. Overall, the zebrafish Tcf7l2 mutant, characterized by hyperglycemia, pancreatic and vascular defects, and reduced regeneration proves to be a suitable model to study the mechanism of action and the pleiotropic effects of Tcf7l2, the most relevant T2D GWAS hit in human populations

    2020-04-06 DAILY UNM GLOBAL HEALTH COVID-19 BRIEFING

    Get PDF
    Executive Summary: NM case updates. Several NM policy and legislative actions. Federal vs. state conflict over medical supply lines. Healthcare workers sleep in cars to prevent family exposure. Same-day in-house testing at Cedars-Sinai. Debate over hydroxychloroquine Tx. Death rate differences: Germany and Italy. African innovations. Testing recommended with mild symptoms. CDC guidelines for law enforcement PPE. New WHO first responder training and CDC sign language resources. COVID-19 droplets can travel up to 27 feet. Transmission from the asymptomatic. Humidifiers help. Drug and vaccine progress

    Probing the Sub-Parsec Dust of a Supermassive Black Hole with the Tidal Disruption Event AT 2020mot

    Full text link
    AT 2020mot is a typical UV/optical tidal disruption event (TDE) with no radio or X-ray signatures in a quiescent host. We find an i-band excess and re-brightening along the decline of the light curve which could be due to two consecutive dust echoes from a TDE. We model our observations following van Velzen et al. (2016) and find that the near-infrared light curve can be explained by concentric rings of thin dust within \sim0.1 parsecs of a 6e6 M_{\odot} supermassive black hole (SMBH), among the smallest scales at which dust has been inferred near SMBHs. We find dust covering factors of order fc \leq 2%, much lower than found for dusty tori of active galactic nuclei. These results highlight the potential of TDEs for uncovering the environments around black holes when including near-infrared observations in high-cadence transient studies

    A chronic high-fat diet causes sperm head alterations in C57BL/6J mice

    Get PDF
    A chronic-positive energetic balance has been directly correlated with infertility in men, but the involved mechanisms remain unknown. Herein we investigated weather in a mouse model a chronic feeding with a diet supplemented with chicken fat affects sperm head morphology. To accomplish this, we fed mice for 16 weeks with either control food (low-fat diet, LFD) or control food supplemented with 22% chicken fat (high-fat diet, HFD). At the end of the feeding regimen, we measured: redox and inflammatory changes, cholesterol accumulation in testis and analyzed testicular morphological structure and ultra-structure and liver morphology. We found that the mice fed HFD resembled some features of the human metabolic syndrome, including systemic oxidative stress and inflammation, this group showed an increment in the following parameters; central adiposity (adiposity index: 1.07 0.10 vs 2.26 0.17), dyslipidemia (total cholesterol: 153.3 2.6 vs 175.1 8.08 mg/dL), insulin resistance (indirect Insulin resistance index, TG/HDL-c: 2.94 0.33 vs 3.68 0.15) and fatty liver. Increased cholesterol content measured by filipin was found in the testicles from HFD (fluorescence intensity increase to 50%), as well as an alteration of spermiogenesis. Most remarkably, a disorganized manchette-perinuclear ring complex and an altered morphology of the sperm head were observed in the spermatozoa of HFD-fed mice. These results add new information to our understanding about the mechanisms by which systemic oxidative stress and inflammation may influence sperm-head morphology and indirectly male fertility.Fil: Funes, Abi Karenina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Histología y Embriología de Mendoza Dr. Mario H. Burgos. Universidad Nacional de Cuyo. Facultad de Ciencias Médicas. Instituto de Histología y Embriología de Mendoza Dr. Mario H. Burgos; ArgentinaFil: Saez Lancellotti, Tania Emilce Estefania. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Histología y Embriología de Mendoza Dr. Mario H. Burgos. Universidad Nacional de Cuyo. Facultad de Ciencias Médicas. Instituto de Histología y Embriología de Mendoza Dr. Mario H. Burgos; ArgentinaFil: Santillán, Lucas Damián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto Multidisciplinario de Investigaciones Biológicas de San Luis. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto Multidisciplinario de Investigaciones Biológicas de San Luis; ArgentinaFil: Della Vedova, Maria Cecilia. Universidad Nacional de San Luis; ArgentinaFil: Monclus, Maria de Los Angeles. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Histología y Embriología de Mendoza Dr. Mario H. Burgos. Universidad Nacional de Cuyo. Facultad de Ciencias Médicas. Instituto de Histología y Embriología de Mendoza Dr. Mario H. Burgos; ArgentinaFil: Cabrillana, María Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Histología y Embriología de Mendoza Dr. Mario H. Burgos. Universidad Nacional de Cuyo. Facultad de Ciencias Médicas. Instituto de Histología y Embriología de Mendoza Dr. Mario H. Burgos; ArgentinaFil: Gomez-Mejiba, Sandra Esther. Universidad Nacional de San Luis. Facultad de Química, Bioquímica y Farmacia; ArgentinaFil: Ramirez, D. C.. Universidad Nacional de San Luis. Facultad de Química, Bioquímica y Farmacia; ArgentinaFil: Fornes, Miguel Walter. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Histología y Embriología de Mendoza Dr. Mario H. Burgos. Universidad Nacional de Cuyo. Facultad de Ciencias Médicas. Instituto de Histología y Embriología de Mendoza Dr. Mario H. Burgos; Argentin

    Quaternary structure of a G-protein coupled receptor heterotetramer in complex with Gi and Gs

    Get PDF
    Background: G-protein-coupled receptors (GPCRs), in the form of monomers or homodimers that bind heterotrimeric G proteins, are fundamental in the transfer of extracellular stimuli to intracellular signaling pathways. Different GPCRs may also interact to form heteromers that are novel signaling units. Despite the exponential growth in the number of solved GPCR crystal structures, the structural properties of heteromers remain unknown. Results: We used single-particle tracking experiments in cells expressing functional adenosine A1-A2A receptors fused to fluorescent proteins to show the loss of Brownian movement of the A1 receptor in the presence of the A2A receptor, and a preponderance of cell surface 2:2 receptor heteromers (dimer of dimers). Using computer modeling, aided by bioluminescence resonance energy transfer assays to monitor receptor homomerization and heteromerization and G-protein coupling, we predict the interacting interfaces and propose a quaternary structure of the GPCR tetramer in complex with two G proteins. Conclusions: The combination of results points to a molecular architecture formed by a rhombus-shaped heterotetramer, which is bound to two different interacting heterotrimeric G proteins (Gi and Gs). These novel results constitute an important advance in understanding the molecular intricacies involved in GPCR function
    corecore