755 research outputs found

    EOS: A project to investigate the design and construction of real-time distributed embedded operating systems

    Get PDF
    The EOS project is investigating the design and construction of a family of real-time distributed embedded operating systems for reliable, distributed aerospace applications. Using the real-time programming techniques developed in co-operation with NASA in earlier research, the project staff is building a kernel for a multiple processor networked system. The first six months of the grant included a study of scheduling in an object-oriented system, the design philosophy of the kernel, and the architectural overview of the operating system. In this report, the operating system and kernel concepts are described. An environment for the experiments has been built and several of the key concepts of the system have been prototyped. The kernel and operating system is intended to support future experimental studies in multiprocessing, load-balancing, routing, software fault-tolerance, distributed data base design, and real-time processing

    Optimizing Vetoes for Gravitational-wave Transient Searches

    Get PDF
    Interferometric gravitational-wave detectors like LIGO, GEO600 and Virgo record a surplus of information above and beyond possible gravitational-wave events. These auxiliary channels capture information about the state of the detector and its surroundings which can be used to infer potential terrestrial noise sources of some gravitational-wave-like events. We present an algorithm addressing the ordering (or equivalently optimizing) of such information from auxiliary systems in gravitational-wave detectors to establish veto conditions in searches for gravitational-wave transients. The procedure was used to identify vetoes for searches for unmodelled transients by the LIGO and Virgo collaborations during their science runs from 2005 through 2007. In this work we present the details of the algorithm; we also use a limited amount of data from LIGO's past runs in order to examine the method, compare it with other methods, and identify its potential to characterize the instruments themselves. We examine the dependence of Receiver Operating Characteristic curves on the various parameters of the veto method and the implementation on real data. We find that the method robustly determines important auxiliary channels, ordering them by the apparent strength of their correlations to the gravitational-wave channel. This list can substantially reduce the background of noise events in the gravitational-wave data. In this way it can identify the source of glitches in the detector as well as assist in establishing confidence in the detection of gravitational-wave transients

    A Detailed Examination of Astrophysical Constraints on the Symmetry Energy and the Neutron Skin of <sup>208</sup>Pb with Minimal Modeling Assumptions

    Get PDF
    The symmetry energy and its density dependence are pivotal for many nuclear physics and astrophysics applications, as they determine properties ranging from the neutron-skin thickness of nuclei to the crust thickness and the radius of neutron stars. Recently, PREX-II reported a value of 0.283±0.0710.283\pm0.071 fm for the neutron-skin thickness of 208^{208}Pb, Rskin208PbR_{\rm skin}^{^{208}\text{Pb}}, implying a symmetry-energy slope parameter LL of 106±37106\pm37 MeV, larger than most ranges obtained from microscopic calculations and other nuclear experiments. We use a nonparametric equation of state representation based on Gaussian processes to constrain the symmetry energy S0S_0, LL, and Rskin208PbR_{\rm skin}^{^{208}\text{Pb}} directly from observations of neutron stars with minimal modeling assumptions. The resulting astrophysical constraints from heavy pulsar masses, LIGO/Virgo, and NICER favor smaller values of the neutron skin and LL, as well as negative symmetry incompressibilities. Combining astrophysical data with chiral effective field theory (χ\chiEFT) and PREX-II constraints yields S0=33.01.8+2.0S_0 = 33.0^{+2.0}_{-1.8} MeV, L=5315+14L=53^{+14}_{-15} MeV, and Rskin208Pb=0.170.04+0.04R_{\rm skin}^{^{208}\text{Pb}} = 0.17^{+0.04}_{-0.04} fm. We also examine the consistency of several individual χ\chiEFT calculations with astrophysical observations and terrestrial experiments. We find that there is only mild tension between χ\chiEFT, astrophysical data, and PREX-II's Rskin208PbR_\mathrm{skin}^{^{208}\mathrm{Pb}} measurement (pp-value =12.3%= 12.3\%) and that there is excellent agreement between χ\chiEFT, astrophysical data, and other nuclear experiments

    Astrophysical Constraints on the Symmetry Energy and the Neutron Skin of <sup>208</sup>Pb with Minimal Modeling Assumptions

    Get PDF
    The symmetry energy and its density dependence are crucial inputs for many nuclear physics and astrophysics applications, as they determine properties ranging from the neutron-skin thickness of nuclei to the crust thickness and the radius of neutron stars. Recently, PREX-II reported a value of 0.283±0.0710.283 \pm 0.071 fm for the neutron-skin thickness of 208^{208}Pb, implying a slope parameter L=106±37L = 106 \pm 37 MeV, larger than most ranges obtained from microscopic calculations and other nuclear experiments. We use a nonparametric equation of state representation based on Gaussian processes to constrain the symmetry energy S0S_0, LL, and Rskin208PbR_\mathrm{skin}^{^{208}\mathrm{Pb}} directly from observations of neutron stars with minimal modeling assumptions. The resulting astrophysical constraints from heavy pulsar masses, LIGO/Virgo, and NICER clearly favor smaller values of the neutron skin and LL, as well as negative symmetry incompressibilities. Combining astrophysical data with PREX-II and chiral effective field theory constraints yields S0=33.01.8+2.0S_0 = 33.0^{+2.0}_{-1.8} MeV, L=5315+14L=53^{+14}_{-15} MeV, and Rskin208Pb=0.170.04+0.04R_\mathrm{skin}^{^{208}\mathrm{Pb}}=0.17^{+0.04}_{-0.04} fm

    Parameter Estimation for Gravitational-wave Bursts with the BayesWave Pipeline

    Get PDF
    We provide a comprehensive multi-aspect study of the performance of a pipeline used by the LIGO-Virgo Collaboration for estimating parameters of gravitational-wave bursts. We add simulated signals with four different morphologies (sine-Gaussians (SGs), Gaussians, white-noise bursts, and binary black hole signals) to simulated noise samples representing noise of the two Advanced LIGO detectors during their first observing run. We recover them with the BayesWave (BW) pipeline to study its accuracy in sky localization, waveform reconstruction, and estimation of model-independent waveform parameters. BW localizes sources with a level of accuracy comparable for all four morphologies, with the median separation of actual and estimated sky locations ranging from 25 degrees. 1 to 30 degrees. 3. This is a reasonable accuracy in the two-detector case, and is comparable to accuracies of other localization methods studied previously. As BW reconstructs generic transient signals with SG wavelets, it is unsurprising that BW performs best in reconstructing SG and Gaussian waveforms. The BW accuracy in waveform reconstruction increases steeply with the network signal-to-noise ratio (S/N-net), reaching a 85% and 95% match between the reconstructed and actual waveform below S/N-net approximate to 20 and S/N-net approximate to 50, respectively, for all morphologies. The BW accuracy in estimating central moments of waveforms is only limited by statistical errors in the frequency domain, and is also affected by systematic errors in the time domain as BW cannot reconstruct low-amplitude parts of signals that are overwhelmed by noise. The figures of merit we introduce can be used in future characterizations of parameter estimation pipelines

    LIGO detector characterization in the second and third observing runs

    Get PDF
    The characterization of the Advanced LIGO detectors in the second and third observing runs has increased the sensitivity of the instruments, allowing for a higher number of detectable gravitational-wave signals, and provided confirmation of all observed gravitational-wave events. In this work, we present the methods used to characterize the LIGO detectors and curate the publicly available datasets, including the LIGO strain data and data quality products. We describe the essential role of these datasets in LIGO–Virgo Collaboration analyses of gravitational-waves from both transient and persistent sources and include details on the provenance of these datasets in order to support analyses of LIGO data by the broader community. Finally, we explain anticipated changes in the role of detector characterization and current efforts to prepare for the high rate of gravitational-wave alerts and events in future observing runs

    Sleep Apnea Symptoms and Risk of Temporomandibular Disorder: OPPERA Cohort

    Get PDF
    The authors tested the hypothesis that obstructive sleep apnea (OSA) signs/symptoms are associated with the occurrence of temporomandibular disorder (TMD), using the OPPERA prospective cohort study of adults aged 18 to 44 years at enrollment (n = 2,604) and the OPPERA case-control study of chronic TMD (n = 1,716). In both the OPPERA cohort and case-control studies, TMD was examiner determined according to established research diagnostic criteria. People were considered to have high likelihood of OSA if they reported a history of sleep apnea or ≥ 2 hallmarks of OSA: loud snoring, daytime sleepiness, witnessed apnea, and hypertension. Cox proportional hazards regression estimated hazard ratios (HRs) and 95% confidence limits (CL) for first-onset TMD. Logistic regression estimated odds ratios (OR) and 95% CL for chronic TMD. In the cohort, 248 individuals developed first-onset TMD during the median 2.8-year follow-up. High likelihood of OSA was associated with greater incidence of first-onset TMD (adjusted HR = 1.73; 95% CL, 1.14, 2.62). In the case-control study, high likelihood of OSA was associated with higher odds of chronic TMD (adjusted OR = 3.63; 95% CL, 2.03, 6.52). Both studies supported a significant association of OSA symptoms and TMD, with prospective cohort evidence finding that OSA symptoms preceded first-onset TMD

    C-tactile afferent stimulating touch carries a positive affective value

    Get PDF
    The rewarding sensation of touch in affiliative interactions is hypothesized to be underpinned by a specialized system of nerve fibers called C-Tactile afferents (CTs), which respond optimally to slowly moving, gentle touch, typical of a caress. However, empirical evidence to support the theory that CTs encode socially relevant, rewarding tactile information in humans is currently limited. While in healthy participants, touch applied at CT optimal velocities (1-10cm/sec) is reliably rated as subjectively pleasant, neuronopathy patients lacking large myelinated afferents, but with intact C-fibres, report that the conscious sensation elicited by stimulation of CTs is rather vague. Given this weak perceptual impact the value of self-report measures for assessing the specific affective value of CT activating touch appears limited. Therefore, we combined subjective ratings of touch pleasantness with implicit measures of affective state (facial electromyography) and autonomic arousal (heart rate) to determine whether CT activation carries a positive affective value. We recorded the activity of two key emotion-relevant facial muscle sites (zygomaticus major—smile muscle, positive affect & corrugator supercilii—frown muscle, negative affect) while participants evaluated the pleasantness of experimenter administered stroking touch, delivered using a soft brush, at two velocities (CT optimal 3cm/sec & CT non-optimal 30cm/sec), on two skin sites (CT innervated forearm & non-CT innervated palm). On both sites, 3cm/sec stroking touch was rated as more pleasant and produced greater heart rate deceleration than 30cm/sec stimulation. However, neither self-report ratings nor heart rate responses discriminated stimulation on the CT innervated arm from stroking of the non-CT innervated palm. In contrast, significantly greater activation of the zygomaticus major (smiling muscle) was seen specifically to CT optimal, 3cm/sec, stroking on the forearm in comparison to all other stimuli. These results offer the first empirical evidence in humans that tactile stimulation that optimally activates CTs carries a positive affective valence that can be measured implicitly

    Gravitational Waves From Known Pulsars: Results From The Initial Detector Era

    Get PDF
    We present the results of searches for gravitational waves from a large selection of pulsars using data from the most recent science runs (S6, VSR2 and VSR4) of the initial generation of interferometric gravitational wave detectors LIGO (Laser Interferometric Gravitational-wave Observatory) and Virgo. We do not see evidence for gravitational wave emission from any of the targeted sources but produce upper limits on the emission amplitude. We highlight the results from seven young pulsars with large spin-down luminosities. We reach within a factor of five of the canonical spin-down limit for all seven of these, whilst for the Crab and Vela pulsars we further surpass their spin-down limits. We present new or updated limits for 172 other pulsars (including both young and millisecond pulsars). Now that the detectors are undergoing major upgrades, and, for completeness, we bring together all of the most up-to-date results from all pulsars searched for during the operations of the first-generation LIGO, Virgo and GEO600 detectors. This gives a total of 195 pulsars including the most recent results described in this paper.United States National Science FoundationScience and Technology Facilities Council of the United KingdomMax-Planck-SocietyState of Niedersachsen/GermanyAustralian Research CouncilInternational Science Linkages program of the Commonwealth of AustraliaCouncil of Scientific and Industrial Research of IndiaIstituto Nazionale di Fisica Nucleare of ItalySpanish Ministerio de Economia y CompetitividadConselleria d'Economia Hisenda i Innovacio of the Govern de les Illes BalearsNetherlands Organisation for Scientific ResearchPolish Ministry of Science and Higher EducationFOCUS Programme of Foundation for Polish ScienceRoyal SocietyScottish Funding CouncilScottish Universities Physics AllianceNational Aeronautics and Space AdministrationOTKA of HungaryLyon Institute of Origins (LIO)National Research Foundation of KoreaIndustry CanadaProvince of Ontario through the Ministry of Economic Development and InnovationNational Science and Engineering Research Council CanadaCarnegie TrustLeverhulme TrustDavid and Lucile Packard FoundationResearch CorporationAlfred P. Sloan FoundationAstronom

    Psychophysical Investigations into the Role of Low-Threshold C Fibres in Non-Painful Affective Processing and Pain Modulation

    Get PDF
    We recently showed that C low-threshold mechanoreceptors (CLTMRs) contribute to touch-evoked pain (allodynia) during experimental muscle pain. Conversely, in absence of ongoing pain, the activation of CLTMRs has been shown to correlate with a diffuse sensation of pleasant touch. In this study, we evaluated (1) the primary afferent fibre types contributing to positive (pleasant) and negative (unpleasant) affective touch and (2) the effects of tactile stimuli on tonic muscle pain by varying affective attributes and frequency parameters. Psychophysical observations were made in 10 healthy participants. Two types of test stimuli were applied: stroking stimulus using velvet or sandpaper at speeds of 0.1, 1.0 and 10.0 cm/s; focal vibrotactile stimulus at low (20 Hz) or high (200 Hz) frequency. These stimuli were applied in the normal condition (i.e. no experimental pain) and following the induction of muscle pain by infusing hypertonic saline (5%) into the tibialis anterior muscle. These observations were repeated following the conduction block of myelinated fibres by compression of sciatic nerve. In absence of muscle pain, all participants reliably linked velvet-stroking to pleasantness and sandpaper-stroking to unpleasantness (no pain). Likewise, low-frequency vibration was linked to pleasantness and high-frequency vibration to unpleasantness. During muscle pain, the application of previously pleasant stimuli resulted in overall pain relief, whereas the application of previously unpleasant stimuli resulted in overall pain intensification. These effects were significant, reproducible and persisted following the blockade of myelinated fibres. Taken together, these findings suggest the role of low-threshold C fibres in affective and pain processing. Furthermore, these observations suggest that temporal coding need not be limited to discriminative aspects of tactile processing, but may contribute to affective attributes, which in turn predispose individual responses towards excitatory or inhibitory modulation of pain
    corecore