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Abstract.
Interferometric gravitational-wave detectors like LIGO, GEO600 and Virgo

record a surplus of information above and beyond possible gravitational-wave
events. These auxiliary channels capture information about the state of the
detector and its surroundings which can be used to infer potential terrestrial
noise sources of some gravitational-wave-like events. We present an algorithm
addressing the ordering (or equivalently optimizing) of such information from
auxiliary systems in gravitational-wave detectors to establish veto conditions
in searches for gravitational-wave transients. The procedure was used to
identify vetoes for searches for unmodelled transients by the LIGO and Virgo
collaborations during their science runs from 2005 through 2007. In this work
we present the details of the algorithm; we also use a limited amount of data
from LIGO’s past runs in order to examine the method, compare it with other
methods, and identify its potential to characterize the instruments themselves.
We examine the dependence of Receiver Operating Characteristic curves on the
various parameters of the veto method and the implementation on real data. We
find that the method robustly determines important auxiliary channels, ordering
them by the apparent strength of their correlations to the gravitational-wave
channel. This list can substantially reduce the background of noise events in
the gravitational-wave data. In this way it can identify the source of glitches
in the detector as well as assist in establishing confidence in the detection of
gravitational-wave transients.
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1. Introduction

The Laser Interferometer Gravitational-wave Observatory (LIGO) [1] together with
Virgo [2] and GEO600 [3] form a network of detectors employing kilometer-scale
interferometers to search for gravitational waves (GWs) from astrophysical and
cosmological sources. One such class of sources is expected to result in short-lived
signals lasting from milliseconds to several seconds within the sensitive frequency
band of the instruments. They may correspond to core-collapse supernovae, neutron
star glitches, cosmic string cusps and kinks, magnetars or some binary compact
systems (made up of neutron stars/black holes) [4]. Environmental and instrumental
noise sources may generate similar short-lived signals through their coupling to
the GW sensing channel. These signals are colloquially referred to as “glitches.”
During the first-generation instruments’ operation (2002-2010), such glitches were non-
Gaussian and non-stationary and presented challenges when searching for transients of
astrophysical origin. For well modelled GW transient sources (like most of the binary
compact star coalescences), knowledge of the expected signal waveform significantly
helps reject such glitches. These signal-based vetoes have been developed and invoked
in existing searches [5, 6]. However, for unmodelled (or poorly modelled) transient
searches, such glitches may drive detection thresholds to significantly higher values
than one would expect for Gaussian backgrounds [7, 8].

Interferometric detectors record their physical environment and detailed
interferometry status through thousands of auxiliary channels that present no or
negligible coupling to GWs. Information from these channels presents an important
handle for understanding (and fixing) the sources of noise in the instruments, reducing
the background and ultimately establishing confidence in detections. The problem of
identifying and “mechanizing” the use of information from auxiliary channels is long
standing within the GW data analysis community [9–11].

A number of statistical quantities have been developed [12] in order to help
characterize the performance of a particular auxiliary channel or veto strategy, such
as veto efficiency: the fraction of GW-channel glitches removed, use percentage: the
fraction of auxiliary channel glitches which can be associated with a GW-channel
glitch [9, 13], dead-time: the effective fractional analysis live-time removed when
applying the veto strategy, and veto significance: the statistical significance of a
measured correlation between auxiliary and GW-channel glitches assuming random
coincidence [14]. These veto metrics are most appropriate for a simple veto strategy,
such as a coincidence between the auxiliary and GW-channel glitch within a short
specified time window. Expansions on this approach include making use of our
knowledge of the instrument to anticipate when noise coupling between the auxiliary
and GW channels is strongest and/or consistent with observation [15, 16]. The use
of machine learning algorithms to digest the large amounts of auxiliary channel
information and predict GW-channel glitches is also an active area of study [17].
Aside from auxiliary information, signal consistency of the event across multiple
instruments, or between the observed signal and theoretical waveform, provide an
extremely powerful way to reject noise transients. However, accidental transient noise
coincidence across multiple instruments is still a dominant source of background in
astrophysical searches, especially in searches for unmodelled transients.

In this paper we present an algorithm which we will call Ordered Veto List (OVL).
It exploits the information from the auxiliary channels in GW detectors and uses a
unified ranking metric, veto efficiency divided by dead-time (described earlier), in order
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to make inferences about the source of GW-channel events recorded at each detector.
The OVL algorithm operates by generating a small time window surrounding a glitch
in an auxiliary channel. If a GW-channel transient is present within this window, it is
assumed to be noise and removed. An earlier version of the method, described in [18],
was used to identify noise transients in a search for GW bursts during LIGO’s fifth
and Virgo’s first science runs [7, 19].

OVL addresses several problems with the simple strategy of removing all live-
time associated with a disturbance in an auxiliary channel. First, OVL identifies only
those channels with noise that couples in a statistically significant way to the GW
channel, thus avoiding the unnecessary removal of live-time. Second, when multiple
auxiliary channels cover the same transient disturbances in the instrument, OVL
selects the channel which optimally removes background with minimal loss of live-
time. Ultimately, OVL provides an ordered list of rules to follow for successively
removing time from the analysis based on auxiliary channel information, with the
most effective channels at the top of the list [14]. The ordered list also provides a
metric representing our confidence that any particlar event is instrumental in origin.

Another hierarchical veto selection method, h-veto [20], has been developed. Both
methods have a similar strategy for ranking veto channels. The major difference is in
the figure-of-metrit used in the ordering process. The ranking for h-veto depends on
the statistical significance of the correlation between the auxiliary and GW channels
under the assumption of a Poisson process. This choice favors large statistics, and
generally results in a short list of highly-efficient vetoes, where each entry represents
the most relevant physical parameters (e.g. time-scale) of the coupling. OVL, on the
other hand, ranks vetoes by the ratio of efficiency divided by the fractional dead-
time. This favors vetoes which have the highest rate of GW-channel transients within
their chosen exclusion windows. In this ranking, it is common for the same auxiliary
channel to appear multiple times in the list with different thresholds on glitch strength
or different exclusion window durations. Typically a channel is chosen first at the
highest thresholds (strongest auxiliary channel disturbances) and smallest exclusion
windows, and only appears later with more relaxed parameters. This choice maximizes
the overall efficiency obtained using the best veto parameters at a fixed dead-time
threshold at the expense of a longer, interlaced list which can be more difficult to
interpret. Finally, in OVL, the veto windows are explicitly calculated as a set of non-
overlapping time intervals (segments), and overlaps between different veto conditions
are calculated exactly. This can be important when considering highly-correlated
auxiliary channels with significant overlap.

This paper is organized as follows. In Section 2, we describe the OVL algorithm,
including construction of veto configurations and their application to GW-channel
data. In Section 3, we discuss OVL’s performance when applied to two samples of
LIGO data: one month from LIGO’s fourth science run (S4) and one week from
LIGO’s sixth science run (S6). We evaluate the method’s performance using Receiver
Operating Characterisic (ROC) curves and examine some features of the ordering
generated. We conclude in Section 5.

2. Description of the algorithm

OVL is based on a simple process, which includes constructing veto-configurations, the
application of those configurations to GW-channel data, and iteration. It uses glitches
identified by a generic transient-finding algorithm called Kleine Welle (KW) [21].
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Figure 1. A cartoon showing how veto segments are constructed for a given
configuration. Time runs on the x-axis while the y-axis is an arbitrary quantity
that may represent the amplitude of the signal in the time-domain or some scalar
quantity reflecting its significance in a time-frequency decomposition. In an
auxiliary channel (labeled “vchan” here), the glitches are thresheld (shown as
“vthr”) and then windows (indicated as “vwin” above) are created surrounding
those glitches. The union of these windows is then used to remove time from the
GW channel (shown as “DARM ERR” above), thereby vetoing some GW-channel
glitches.

Each of these glitches is characterized by a time, duration, frequency content, and
signficance‡. While all our investigations are based on KW, any glitch-finding method
able to provide at least a time and a significance for each event can be used. In this
way, OVL can be adapted to specific searches for different types of GW signals, or to
more general detection problems beyond GW astronomy.

2.1. Construction of veto configurations

The OVL algorithm systematically searches for coincident signals in the GW and
auxiliary channels by identifying glitches in the GW channel that fall within pre-
defined time-window surrounding glitches in an auxiliary channel. In order to
accommodate the variety of possible couplings between auxiliary channels and the
GW channel, the algorithm tries a variety of window sizes and thresholds on auxiliary
glitch thresholds. Each configuration is labeled by a set of three parameters: auxiliary
channel name, a threshold on the significance of auxiliary glitches, and time window.
OVL uses all permutations of auxiliary channels, significance-thresholds and time-
windows to create a diverse set of configurations. In the specified auxiliary channel,
all glitches are thresheld by their significance, and then time-windows are constructed
around the central time of each remaining glitch. The union of these time windows
forms a list of (possibly) disjoint segments that are used to remove livetime. Figure 1
demonstrates this procedure using some artificial data.

The algorithm creates these configurations to separate and catagorize different

‡ KW significance is a measure of the likelihood of observing a signal with greater or equal signal
energy assuming a gaussian noise distribution.
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types of auxiliary glitches. It then applies the configurations to the GW-channel
data and searches for an optimal order. This allows the method to find highly
correlated configurations while removing spurious information from uncorrelated
channels, thereby identifying troublesome auxiliary channels or glitches.

There is no reason the parameters describing each configuration must be limited
to channel name, time-window, and significance threshold. By including other degrees
of freedom such as frequency bands, glitch duration, data epoch, or time of day (e.g.
mornings vs. evenings), the algorithm will be able to find more specific correlations
between configurations and GW-channel data, giving better overall performance.
However, the total number of configurations must also be balanced against the number
of auxiliary glitches available in order to maintain sufficient statistics.

2.2. Initial application of veto configurations to GW-channel data

OVL is based on the idea of ordering veto configurations by their correlations with
GW-channel data. We achieve this by associating a figure-of-merit with each veto
configuration. Initially, we assume there is no way to know which configuration will
perfrom well, and we give each an equal opportunity§. Each veto configuration is
applied to the entire GW-channel data set, which we represent as a list of times
corresponding to GW-channel glitches. For each veto configuration, veto-segements
are generated as prescribed in Section 2.1. We then count the number of GW-channel
glitches that fall within these segments, and determine the configuration’s efficiency,
the fraction of events removed. Likewise, we determine the fractional dead-time for
the configuration by measuring the fraction of livetime contained in the veto segments
using explicit segment arithmetic. The ratio of these two quantities defines OVL’s
figure-of-merit, which we will refer to as efficiency-over-dead-time. This “base-line”
efficiency-over-dead-time measurement is then used to find an initial ordering scheme
for all veto configurations. Figure 1 shows how this looks when comparing two time
series.

We should note that the efficiency-over-dead-time has a straightforward
interpretation in terms of Poisson processes. We can write the efficiency as ε =
nc/NGW and fractional dead-time as f = t/T where nc is the observed number of
coincident events, NGW is the total number of GW-channel glitches, t is the amount
of time contained in the veto-segments and T is the total amount of live-time. We
then have

ε/f =
nc

t(NGW /T )
≈ nc

tλGW
(1)

where λGW is an estimate of the rate of GW-channel glitches. This means that
tλGW ≈ 〈nc〉, the expected number of GW-channel coincidences that will randomly
fall within the veto-segments. We then see that the efficiency-over-dead-time is nothing
but the ratio of the observed coincident events to the expected number of coincident
events. As we will see in the results and analysis section, we observe efficiency-over-
dead-times as high as 104 for some highly-correlated configuations.

Besides associating an efficiency-over-dead-time with each configuration, OVL
also records the Poisson significance of finding the measured number of coincidences.
We compute the Poisson significance as the cumulative probability of observing as
many or more coincident GW-channel glitches given the expected number of coincident

§ Knowledge of the couplings between instrument channels may provide guidance in defining lists of
channels that could make better or worse vetoes.
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glitches. OVL uses this significance threshold to avoid over-training by requiring the
observed correlations to be reasonably unlikely to occur by chance given the large
number of configurations tested.

We should note that rankings based on efficiency-over-dead-time and rankings
based on Poisson-significance (as is done with h-veto) are not equivalent, and the two
metrics may generate different lists. We can see this by noting that the statistical
significance of observing a given number of coincidences can be written as

p =

∞∑

k=nc

〈nc〉k
k!

e−〈nc〉 =
∞∑

k=nc

(nc(f/ε))
k

k!
e−nc(f/ε). (2)

We then see that the statistical significance is a function of both the number of
coincident events and efficiency-over-dead-time. Generally, for a given ε/f , the Poisson
statistical significance will favor veto configurations with large nc, and therefore favors
configurations with large number statistics versus a ranking based only on ε/f .

2.3. Iteration and ordering

Once a “base-line” efficiency-over-deadtime has been determined for each veto
configuration, they are ordered accordingly. At this point, veto configurations are
applied hierarchically. When a configuration is applied, OVL counts the number of
coincident GW-channel glitches and evaluates the associated efficiency-over-deadtime
and Poisson-significance. The GW-channel glitches and veto-segments associated with
this configuration are removed from the rest of the analysis. In this way, OVL prevents
redundant vetoes. Later configurations do not count GW-channel events or live-time
already removed by previous configurations. This data-reduction scheme is applied
after each configuration, and therefore each veto configuration in the list sees a slightly
different set of GW-channel glitches. Furthermore, the statistics computed for each
configuration do not represent global fractions, but rather are fractions of a subset of
data. This also allows OVL to measure the additional information contained in later
configurations. If they are completely redundant with an earlier configuration, then
they will not find any new GW-channel glitches and their efficiency-over-deadtime
will vanish. In this way, OVL can remove spurious, extraneous, or redundant veto
configurations.

This begs the question of what determines an important configuration. We define
these as configuations that yield both a sufficiently high efficiency-over-deadtime and
Poisson-significance. Because these are functionally dependent, we can think of this
as requiring a sufficient strength of correlation and a sufficently large number of
observed coincidences. By including the Poisson-significance threshold, OVL tends
to reject extremely low number statistics with low correleation strength, which makes
the ordered list’s performance more robust when applying it to different data sets.
If configurations do not perform above these two thresholds, they are removed from
the list. This process helps OVL to converge rapidly, and prevents under-performing
channels which will be removed in the next iteration from affecting the performance
of later channels. For final evaluation of a list’s perforance after the ordering process
is complete, all channels in the list are applied.

In practice, the entire method is repeated several times, which allows for repeated
evaluation and ranking of the configurations. After about 2 iterations, the list gains
the bulk of its performance, with a nearly monotonic decrease in efficiency-over-dead-
time as one reads down the ordered list. The near monotonicity is caused by the
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finite number of iterations, as well as phenomena analogous to cycles in Markov
processes. Once a sufficiency monotonic list is created, further iterations do not
have a large impact on performance, but they can help simplify the list by removing
unnecessary configurations, and are relatively cheap to calculate because the final lists
are comparatively short.

3. Results and analysis

An earlier version of this method [18] was used to reject transient noise artifacts in
searches for unmodelled bursts in LIGO’s fifth science run (S5) and Virgo’s first science
run (VSR1) data [7, 19]. In those searches, the method was able to reject 13–45% of
single-detector glitches and 5–10% of coincident background (which is generally weak)
at under 1% dead-time. In order to further study the performance and systematics
of the OVL procedure, we analysed the entirety of LIGO S4 data (February 22, 2005
- March 25, 2005) from the LIGO Hanford Observatory (H1) and one week of LIGO
S6 data (May 28, 2010 - June 4, 2010) from the LIGO Livingston Observatory (L1)
using KW glitches [21]. These two data sets were collected from geographically distant
detectors and are separated by several years. They therefore represent very different
noise environments. Furthermore, because the LIGO detectors underwent significant
commissioning between S4 and S6, these data sets may capture different couplings
between auxiliary channels and the GW-channel data. Therefore, the similarities in
OVL’s performance on these very different data sets allows us to draw conclusions
about the method rather than peculiarities in either data set.

In this analysis, because there may be causal relations between the GW-channel
and auxiliary channels, we restrict ourselves to a subset of auxiliary channels shown
to be minimally coupled to the GW channel and thus safe to be used as vetoes. These
safety relations are determined through hardware injections at the sites, in which the
test masses are driven with a known GW-like transient waveform. Searches for these
transients in auxiliary channels during hardware injections at the instruments have
been used to establish the exact conditions on their strength (either absolute or related
to the GW-channel signal) that make them “safe”, i.e., securing that they will not
systematically reject an astrophysical GW transient [8, 19, 22].

In what follows, we find similar performance between the two data sets, and
describe the characteristics of the method. In both cases, OVL identifies a subset of
channels that appear to be correlated with the GW-channel data which is significantly
smaller than the set of all auxiliary channels.

Our implementation of this algorithm used python. An AMD 2.7 GHz 32-
bit processor processed 3.7 × 104 seconds of data containing 2.8 × 103 GW-channel
glitches with 250 auxiliary channels from S6 in approximately 9 hours. Nearly half the
computational effort is spent on the first two iterations, with the following iterations
processing much faster.

3.1. ROC curves and bulk statisitcs

The Receiver Operating Characteristic (ROC) curve is the basic diagnostic for how
the OVL algorithm performs. It shows the fraction of GW-channel glitches removed
as a function of the fraction of live-time removed. As a first experiment, we compared
two ranking figures-of-merit: efficiency-over-deadtime and the Poisson significance,
both described in Section 2.2. Figure 2 shows the ROC curves for each ranking
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Figure 2. Comparison of ranking by two figures of merit. Both curves are
generated over the S6 data set, using the same code, set of configurations, and
performance thresholds. These curves represent the 9th iteration through OVL,
when both ordered lists have settled down to a near optimal order. We see
that the efficiency-over-deadtime (ε/f : blue) curve is better than the Poisson
Signifcance curve (Ppoisson: green)). Efficiency–over-dead-time also produces a
much smoother curve, indicating that Poisson significance favors larger-number
statistics.

scheme. As expected, ranking by incremental efficiency-over-deadtime results in a
higher-performing ROC when measuring overall cumulative efficiency as a function
of dead-time, though the two rankings begin to converge near at the end where all
effective veto conditions are used up. Furthermore, the Poisson significance selects
many fewer configurations, each covering a larger number of events. This is seen
clearly by the discreteness of the curve. A short veto list is often convenient for
simplicity and interpretability. A smooth curve with many configurations may also be
preferable in cases where one requires a continuous ranking parameter.

As stated above, OVL’s performance improves upon iteration, but the majority of
the efficiency gains are achieved after 2 iterations. Figure 3 shows OVL’s performance
after several different iterations. The main advantage of running to 9 iterations is
a reduction in the number of veto configurations identified. Table 1 shows that the
number of important channels stabilizes rather early, but the number of important
configurations continues to decrease. This means that further iteration helps to
compress the information stored in the important channels into a shorter list and
determine exactly which glitches in which channels are most troublesome.

We also note that the ordering improves upon further iteration. Figure 3 shows
the relation between a configuration’s efficiency-over-deadtime and its position in the
list for different iterations. We observe a general smoothing with further iterations.
Even though the bulk of OVL’s performance is gained after 2 iterations, the list still
contains many irrelevant and underperforming configurations. By iteration 9, these
configurations have been removed and efficiency-over-deadtime decrease much more
smoothly, although there are still some fluctuations. Furthermore, the histograms of
efficiency-over-deadtime show the distribution of performance over the list. We see
that the peak of the distribution is well away from the Poisson coincidence prediction
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(a) S4 H1

(b) S6 L1

Figure 3. (Left) Receiver Operating Characteristic curves. These plots show
OVL’s performance after different numbers of iterations. Importantly, iteration
1 represents the ordering generated by applying individual veto configurations
independently to the entire data set. We would expect the algorithm to improve
with further iteration because it can better order its list of vetoes, but we see that
the bulk efficiency gains are achieved after only two iterations. There are marginal
gains with further iterations, but these are well within the expected errors. The
shaded regions represent 68% confidence intervals.

(Right) The relation between OVL’s figure of merit (ε/f = efficiency-over-
deadtime) and the veto-configuration’s order in the list for S4 and S6 data. We
expect a nearly monotonic decrease for well-trained lists. The blue curve denotes
the point-estimate, with the shaded regions representing 68% and 95% confidence
intervals. We see that the errors are relatively small in these plots, in contrast
to Figure 4 where the same analysis is repeated for uncorrelated data. There
is the additional feature in the S6 data: a distinct knee in these plots at high
fractional rank. This suggests a large special population of easily-vetoed glitches.
The projected histograms show the grouping of ε/f , with the peak clearly above
Poisson coincidence’s prediction of 1. The bin with ε/f = 0 corresponds to
configurations that do not find any conincident GW-channel events.



Optimizing Vetoes for Gravitational-wave Transient Searches 10

of 1, and iteration does not damage this distribution.

3.2. Performace on uncorrelated data

In order to further check the overall implementation and performance of our veto
algorithm, we examined its output when it was applied on uncorrelated data. For this
purpose we constructed artificial data sets by randomly shifting the auxiliary glitches
in every channel by a different amount of time using S6 data. In this way, we break
all temporal correlations between the GW channel and auxiliary channels, as well as
between the auxiliary channels themselves. We therefore expect OVL to be subject
only to correlations due to statitical fluctuations in the coincidence of two Poisson
processes. We processed this data through the OVL pipeline and examined the ROC
curve as well as the dependence of the algorithm’s figure of merit as a funcation of a
configuration’s fractional rank. This is shown in Figure 4.

When compared with the plots in Figure 3 we see that the ROC curve is much
worse for the uncorrelated data, as expected. However, there are common features
in the lists, namely the comparable decay in efficiency-over-deadtime as one moves to
higher ranks.

Figure 4 shows the relation between efficiency-over-deadtime and a configuration’s
rank. This ordering consists of over-training only because it represents OVL’s
performance when evaluated on the same data used to generate the ordered list.
We should note that when we apply the threshold on Poisson significance used for
the correlated data to this uncorrelated data, only 1% of these configuration survive.
However, by lowering the Poisson significance threshold, we are able to examine the
underlying distribution of noise in our analysis. We can immediately interpret our
threshold on efficiency-over-deadtime from the projected histogram as designed to
separate the distributions for correlated data (Figure 3) and uncorrelated data (Figure
4).

3.3. Round robin algorithm

There exists a potential danger of over-training OVL with a single data set, which
may produce artificially high performance that will not generalize to other data. For
this purpose, we performed a simple cross-referencing procedure that shows this is
not significant for our results. We divided the data into separate sets, which were

Table 1. Number of auxiliary channels and veto-configurations present in OVL
as a funtion of iteration number. We see that the number of important channels
stabilizes quicky and corresponds to the bulk efficiency gains seen in Figure 3.
The information in these channels is then compressed into a small number of
veto-configurations (corresponding to different values of auxiliary channel glitch
significance and coincidence time-window) upon further iterations.

iteration initial 1 2 3 4 5 6 7 8 9

S4 H1
No. chan 161 106 99 52 47 47 47 47 47 47
No. config 7245 3117 294 196 183 178 176 176 176 175

S6 L1
No. chan 202 44 37 35 35 35 35 35 35 35
No. config 11250 4361 209 140 128 119 118 118 117 117
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Figure 4. (Left) Receiver Operating Characteristic curves for uncorrelated data.
We see that the ROC curves are much worse than those for correlated data.
(Right) The relation between OVL’s figure of merit and the veto-configuration’s
order in the list for time-shifted S6 data. The bin with ε/f = 0 corresponds
to configurations that do not find any conincident GW-channel events. We see
that there is still the general trend seen in Figure 3, however the errors are
somewhat larger here. This is most noticeable because the upper error estimates
are significantly higher in this figure. This is expected, because all coincident
GW-channel glitches are due to pure chance in the time-shifted data, and the
errors are dominated by small number statistics and the lower bound nc ≥ 0.

arranged like a 1-dimensional checker-board in time, meaning the kth bin contains
every kth minute of the livetime. Training was then performed on all sets except one,
and that one set was used for evaluation. This was carried out with each set, so we have
a measure of the algorithm’s performance over all our data. Fig 5 shows a comparison
between the round robin and non-round robin procedure. We see that there is no
significant difference between the two curves at the 68% confidence level, although
there is a small systematic error introduced. The consistency between round robin
and non-round robin performance is due to OVL’s threshold on Poisson significance,
described in Section 2.2. By requiring the number of observed coincidences to be
statistically significant relative to the total number of veto configurations tested, OVL
can reject configuations with low number statistics that may pass the performance
threshold due to random coincidence alone.

We also examine the performance of individual configurations when round robin
binning is used. Figure 6 shows the efficiency-over-deadtime for correlated and
uncorrelated S6 data (discussed further in Section 3.2), and should be compared with
Figures 3 and 4. It is clear that both correlated and uncorrelated data contain some
configurations that do not perform well on disjoint data. These are likely due to
statistical fluctuations and represent the sharp spikes in these plots. However, we
also see that consistent performance is the norm in correlated data, whereas under-
performance is the norm for uncorrelated data. The few outliers in the uncorrelated
data set are due to single auxiliary glitches that happen to coincide with GW-channel
events, and are statistical in nature. We also note that the distributions over efficiency-
over-deadtime are very different for the two data sets. Encouragingly, the uncorrelated
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(a) S4 H1 (b) S6 L1

Figure 5. A comparison of round robin and non-round robin analysis techniques.
Shaded regions represent 68% confidence intervals. The round robin algorithm
ensures that lists are developed and then evaluated using disjoint data sets.
However, we see that the application to disjoint data has a very small affect
on the list’s performance. This suggests that OVL finds overwhelmingly true
correlations in the data. The observed decrease in performance could be due to
a combination small over-training errors as well as statistical fluctuations caused
by evaluating a list’s performance on a smaller data set (implicit in the division
associated with round robin analysis).

data appears to have a peak in likelihood near ε/f = 1, which agrees with our
Poissonian interpretation. We should also note that the ordering in the uncorrelated
data is generated entirely by statistical errors in the estimation of efficiency and dead-
time, which is clearly visible in the error estimates for uncorrelated data show in
Figure 6.

3.4. Effects of algorithmic parameters

OVL constructs a set of configurations based on a list of channels, thresholds, and
time-windows. In the bulk of this paper, we used time-windows from the set {25ms,
50ms, 100ms, 150ms, 200ms} and KW significance thresholds from the set {15, 25,
30, 50, 100, 200, 400, 800, 1600}. These thresholds and windows were chosen because
they reflect the types of glitch significance and correlation time-scales observed in
the past. We would expect that increasing the dimensionality of these configurations
would allow the algorithm to better separate classes of glitches (characterized by the
elements of the configuration).

Generally, we see that high auxiliary significance thresholds congregate at the top
of the ordered list. This is because these events are relatively rare and are likely to
be strongly correlated with GW-channel glitches. We contrast this with low threshold
events, which are relatively common and may be more strongly influenced by a
statistical background. This also means that these high-threshold auxiliary glitches are
used first and dominate OVL’s performance at low dead-time. However, at sufficiently
high dead-time, low-significance auxiliary glitches begin to dominate performance.
Consider a set of veto configurations with the same auxiliary channel and significance
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Figure 6. Comparison of OVL figure-of-merit upon evaluation using round-
robin binning and correlated/uncorrelated data. We see that there are many
configurations that perform poorly upon round-robin evaluation in both the
correlated and uncorrelated data. However, we also see that the histograms of
the two data sets are much different, with clearly separated points of maximum
likelihood. Futhermore, the uncorrelated data appears to have a peak in likelihood
near ε/f ≈ 1, which is exactly what we expect from Poisson coincidence. The
bin with ε/f = 0 corresponds to configurations that do not find any conincident
GW-channel events.

threshold. Then, for a configuration from this set to remove more GW-channel glitches,
it must widen the time-window applied around auxiliary glitches. If the GW-channel
glitches are clustered, this can improve efficiency, but if the GW-channel glitches are
sparse, it will mainly increase fractional dead-time without removing more glitches.
However, lower threshold events may be able to better select small, widely separated
GW-channel glitches without increasing the time-window used. Even if the correlation
is weaker, this can increase overall performance. Similar effects are observed with the
time-windows. Small time-windows typically show up at the top of the list with larger
time windows appearing later and at decreased efficiency-over-deadtime.

4. Applications in instrument characterization

The OVL method we just described generates a wealth of information beyond the list
of times that should be used as vetoes in a search for gravitational-wave transients.
This information can be mined and used for general instrument monitoring and
characterization. The algorithm is also simple and efficient enough so that to be
able to analyze data within a few seconds from real time and without any significant
impact on computational resources.

In giving a flavor of the capacity of our analysis, we will focus on the immediately
derived quantities out of our statistical analysis‖. The typical output of our algorithm
‖ The individual raw glitches used as input as well as the time series of vetoes produced can also be
mined for even richer statistical information for instrument characterization. This includes analysis
on Poissonianity, frequency content, and the specific role they may play on glitches in the GW channel
of certain strength, frequency or waveform morphology.
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in the training phase is captured in Figure 2, where the most relevant auxiliary
channels (and their corresponding parameters) are ranked using our unified criterion.

Table 2. This is an example OVL output from iteration 9 of the S6 data. We
observe a nearly monotonic decrease in efficiency-over-deadtime as we proceed
down the list. We also notice that several channels appear multiple times with
different sets of significance thresholds and time-windows. In way of definition,
livetime is the number of seconds in the analysis; #gwtrg is the number of GW-
channel glitches in the analysis; vchan is the auxiliary channel name; vthr is
the threshold on auxiliary KW significance; vwin is the time-window applied
around each auxiliary glitch; deadsec is the number of seconds removed by this
configuration; vexp is the expected number of GW-channel glitches coincident
contained in deadsec; vact is the actual number of coincident GW-channel glitches;
vsignif is the negative-logarithm of the Poisson significance of observing vact
coincident GW-channel glitches when we expected vexp; eff is the efficiency;
fdt is the fractional dead-time; eff/fdt is efficiency-over-deadtime, OVL’s ranking
metric.

livetime #gwtrg vchn vthr vwin deadsec vexp vact vsignif eff/fdt
374014.000 2826 L1_LSC-POB_Q_1024_4096 400 0.025 0.238 0.00 6 44.50 3334.29
374013.762 2820 L1_OMC-PZT_LSC_OUT_DAQ_8_1024 1600 0.025 1.500 0.01 32 225.00 2829.42
374012.262 2788 L1_OMC-PZT_LSC_OUT_DAQ_8_1024 400 0.025 0.550 0.00 11 77.97 2683.02
374011.712 2777 L1_ISI-OMC_GEOPF_H2_IN1_DAQ_8_1024 1600 0.100 0.150 0.00 3 22.19 2693.64
374011.562 2774 L0_PEM-LVEA_SEISZ_8_128 200 0.050 0.100 0.00 2 15.11 2696.55
374011.462 2772 L1_ISI-OMC_GEOPF_H1_IN1_DAQ_8_1024 400 0.025 0.266 0.00 5 35.94 2539.06
374011.196 2767 L1_OMC-PZT_LSC_OUT_DAQ_8_1024 200 0.025 0.541 0.00 9 62.50 2250.26
374010.656 2758 L1_OMC-PZT_LSC_OUT_DAQ_8_1024 100 0.025 0.908 0.01 14 95.28 2090.54
374009.747 2744 L1_ASC-ITMY_P_8_256 400 0.025 3.700 0.03 56 374.35 2062.93
374006.047 2688 L0_PEM-LVEA_BAYMIC_8_1024 400 0.025 1.835 0.01 25 166.23 1895.94

The identification and ranking of channels that contribute to gravitational-wave-
like glitches allows tracking such contributions over time, thus promptly signaling
changes in the couplings between instrument channels and their environments. In
Figure 7 we show an example of how auxiliary channels appear in OVL’s final training
table (like the one in Figure 2) The colors reflect the significance of each channel in the
corresponding veto configuration list, with dark red corresponding to high efficiency–
over–dead-time and blue corresponding to low efficiency–over–dead-time. Applying
simple thresholds either in the absolute significance or in the stride-by-stride changes
in significance can provide useful handles in identifying and investigating changes in
instrument performance.

Zooming out to more macroscopic quantities, key summary quantities encoded in
our ROC curves like efficiency and dead-time can be readily used for prompt figure-of-
merit criteria when making data acquisition decisions as data come in. For example,
by fixing a tolerable dead-time one can monitor the efficiency of the veto algorithm
as a function of time, or in a symmetric way monitor the dead-time corresponding
to a veto configuration that results in a fixed efficiency. We show one such example
in Figure 8. In this plot the resulting efficiency in removing gravitational-wave-like
glitches from the gravitational-wave channel over seven days of S6 data is shown at
two arbitrary dead-times, one at 0.1% and another one at 0.01%.

The examples we have used above mostly target identification and studies of what
has been a commonly encountered feature of the first generation gravitational-wave
detectors, namely, non-stationarity. Our algorithm assists the study of such variability
at the single-channel level as well as at the macroscopic level, in terms of quantities
that will end up being relevant in an end-to-end search (like residual singles rates
before and after veto application).
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Figure 7. Appearance of auxiliary channels shown over the single week of S6
data. Channels’ relative performance is encoded in the color scheme, with dark red
implying high ε/f and blue low ε/f . Simple thresholding on absolute significance
or relative changes in significance can provide handles for initiating and assisting
investigations on instrument performance. We should note that the “L1” prefix
on the channel names corresponds to the LIGO Livingston detector, and the last
two numbers at the end of the channel name correspond to the bandwidth of that
channel (in Hertz).
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Figure 8. Efficiency at fixed fractional dead-time over 1 week of S6 data. This
plot shows the change in performance for a single ordered list when it is applied
on different days. The abscissa shows the time difference between the training
and evaluation sets and we see that there is significane flucutation in performance,
although those fluctuations appear to be bounded.

We should also note that OVL can be used to conduct safety studies, in which
we determine which auxiliary channels are coupled to possible GW signals. The
results presented in this paper are predicated on previous saftey studies, conducted
via hardware injections. However, OVL need not resort to these external studies. By
running the OVL algorithm over a set of fake glitches corresponding to only hardware
injections, OVL will naturally select the auxiliary channels that are highly correlated
with these injections. By removing these auxiliary channels and re-processing the
hardware injections, we can iteratively determine which auxiliary channels are unsafe
and remove them from the analysis. Clearly, the procedure should terminate when
OVL’s performance becomes consistent with uncorrelated data, and example of which
is shown in Section 3.2. These safety studies can be repeated for various types of
injections in order to determine which auxiliary channels are unsafe for certain classes
of expected waveforms.

5. Conclusions

A variety of astrophysical sources of GWs are expected to produce short-
duration signals within the sensitive frequency band of kilometer-scale ground-
based interferometers, such as those operated by the LIGO, GEO600 and Virgo
collaborations. Multiple terrestrial noise sources can produce transient artifacts
(glitches) that resemble these short duration signals, and their contribution to the
background for searches of these types of signals is a limiting factor for search
sensitivity. An active area of research involves developing procedures to remove this
transient noise during analysis of GW-channel data by using information derived
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from the many auxiliary channels which measure the local environment and other
instrumental non-GW degrees of freedom. We presented the Ordered Veto List (OVL)
algorithm, which aims to identify the unique and most relevant correlations between
GW-channel glitches and similar signals seen in auxiliary channels by use of an iterative
application and ranking of auxiliary channel veto conditions.

OVL uses many veto configurations to describe the types of couplings between
auxiliary channels and the GW channel. This implementation used auxiliary channel
name, a threshold on auxiliary glitch significance, and a time-window surrounding
auxiliary glitches. However, the algorithm can be easily extended to include other
parameters such as frequency information or time of day. OVL then constructs a
list of segments using these configuration parameters. The union of time-windows
surrounding auxiliary glitches with a sufficiently high significance is used to remove
data from the GW channel. OVL then computes the configuration’s efficiency and
dead-time, the fractions of GW-channel glitches and livetime removed, respectively.
The configurations are then ranked according to the ratio of these numbers, efficiency-
over-deadtime, which has the natural interpretation as the ratio of the number of
removed GW-channel glitches and the expected number of removed GW-channel
glitches. Furthermore, these configurations are applied hierarchically, in that once
a configuration is applied, later configurations do not see any data removed by earlier
configurations. Upon iteration, this repeated ranking and application finds highly
correlated auxiliary channels and constructs an ordered list based on the efficiency-
over-deadtimes observed. It also removes any redundant or uninformative channels.

This paper presented OVL results based on the entirety of LIGO S4 data
(February 22, 2005 – March 25, 2005) from the LIGO Hanford Observatory (H1) and
one week of LIGO S6 data (May 28, 2010 – June 4, 2010) from the LIGO Livingston
Observatory (L1) using Kleine Welle glitches. These two data sets represent very
different noise sources and couplings between auxiliary channels and the GW channel.
Therefore, the common trends we observe in the two data sets are indicative of OVL
itself, rather than any peculiarities within a data set.

We examined OVL’s performance using standard Reciever Operating Character-
istic (ROC) curves, which shows the fraction of noise signals we are able to remove as a
function of the fractional loss in live-time incurred. We see that the bulk performance
is gained after 2 iterations, and this improves over the application of configurations
based solely on their individual performance when applied to the entier data set. Fur-
ther iteration helps to compress the useful information in the ordered list into a small
number of configurations. This helps isolate exactly which correlations are significant
and makes the list easier to read. We find that while the ROC curve only marginally
improves between 2 and 9 iterations, the ordered list is only 1-2% as long after 9
iterations.

Finally, we point out a few possible applications of OVL to instrument
characterization, including tracking and accounting for instrument non-stationarity
and identification of subsystems containing channels that are highly correlated with
GW-channel glitches.
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