3,127 research outputs found

    Boolean network model predicts cell cycle sequence of fission yeast

    Get PDF
    A Boolean network model of the cell-cycle regulatory network of fission yeast (Schizosaccharomyces Pombe) is constructed solely on the basis of the known biochemical interaction topology. Simulating the model in the computer, faithfully reproduces the known sequence of regulatory activity patterns along the cell cycle of the living cell. Contrary to existing differential equation models, no parameters enter the model except the structure of the regulatory circuitry. The dynamical properties of the model indicate that the biological dynamical sequence is robustly implemented in the regulatory network, with the biological stationary state G1 corresponding to the dominant attractor in state space, and with the biological regulatory sequence being a strongly attractive trajectory. Comparing the fission yeast cell-cycle model to a similar model of the corresponding network in S. cerevisiae, a remarkable difference in circuitry, as well as dynamics is observed. While the latter operates in a strongly damped mode, driven by external excitation, the S. pombe network represents an auto-excited system with external damping.Comment: 10 pages, 3 figure

    Specific genetic markers for detecting subtypes of dengue virus serotype-2 in isolates from the states of Oaxaca and Veracruz, Mexico

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Dengue (DEN) is an infectious disease caused by the DEN virus (DENV), which belongs to the <it>Flavivirus </it>genus in the family <it>Flaviviridae</it>. It has a (+) sense RNA genome and is mainly transmitted to humans by the vector mosquito <it>Aedes aegypti</it>. Dengue fever (DF) and dengue hemorrhagic fever (DHF) are caused by one of four closely related virus serotypes (DENV-1, DENV-2, DENV-3 and DENV-4). Epidemiological and evolutionary studies have indicated that host and viral factors are involved in determining disease outcome and have proved the importance of viral genotype in causing severe epidemics. Host immune status and mosquito vectorial capacity are also important influences on the severity of infection. Therefore, an understanding of the relationship between virus variants with altered amino acids and high pathogenicity will provide more information on the molecular epidemiology of DEN. Accordingly, knowledge of the DENV serotypes and genotypes circulating in the latest DEN outbreaks around the world, including Mexico, will contribute to understanding DEN infections.</p> <p>Results</p> <p>1. We obtained 88 isolates of DENV, 27 from Oaxaca and 61 from Veracruz. 2. Of these 88 isolates, 16 were serotype 1; 62 serotype 2; 7 serotype 3; and 2 serotype 4. One isolate had 2 serotypes (DENV-2 and -1). 3. Partial nucleotide sequences of the genes encoding C- prM (14 sequences), the NS3 helicase domain (7 sequences), the NS5 S-adenosyl methionine transferase domain (7 sequences) and the RNA-dependent RNA polymerase (RdRp) domain (18 sequences) were obtained. Phylogenetic analysis showed that DENV-2 isolates belonged to the Asian/American genotype. In addition, the Asian/American genotype was divided into two clusters, one containing the isolates from 2001 and the other the isolates from 2005–2006 with high bootstrap support of 94%.</p> <p>Conclusion</p> <p>DENV-2 was the predominant serotype in the DF and DHF outbreak from 2005 to 2006 in Oaxaca State as well as in the 2006 outbreak in Veracruz State, with the Asian/American genotype prevalent in both states. Interestingly, DENV-1 and DENV-2 were the only serotypes related to DHF cases. In contrast, DENV-3 and DENV-4 were poorly represented according to epidemiological data reported in Mexico. We found that isoleucine was replaced by valine at residue 106 of protein C in the isolates from these 2005–2006 outbreaks and in those from the 1997, 1998 and 2001 outbreaks in the Caribbean islands. We suggested that this amino acid change may be used as a signature for isolates arising in the Caribbean islands and pertaining to the Asian/American genotype. Other amino acid changes are specific for the Asian/American, Asian and American strains.</p

    Insights into the mechanism of activation of the phosphorylation-independent response regulator NblR. Role of residues Cys69 and Cys96

    Get PDF
    Cyanobacteria respond to environmental stress conditions by adjusting their photosynthesis machinery. In Synechococcus sp. PCC 7942, phycobilisome degradation and other acclimation responses after nutrient or high light stress require activation by the phosphorylation-independent response regulator NblR. Structural modelling of its receiver domain suggested a role for Cys69 and Cys96 on activation of NblR. Here, we investigate this hypothesis by engineering Cys to Ala substitutions. In vivo and in vitro analyses indicated that mutations Cys69Ala and/or Cys96Ala have a minor impact on NblR function, structure, size, or oligomerization state of the protein, and that Cys69 and Cys96 do not seem to form disulphide bridges. Our results argue against the predicted involvement of Cys69 and Cys96 on NblR activation by redox sensing.This work was supported by the Spanish Ministerio de Ciencia e Innovación (grants BFU2009-07371 to A.C., BIO2009-10872 and BIO2010-15424 to A.M. and SAF2008-05742-C02-01 and CSD2008-00005 to J.L.N.) and the Generalitat Valenciana (grants ACOMP2006/083 and ACOMP2011/211 to A.C., ACOMP2010/114 and ACOMP2011/113 to J.L.N.). M.L. López-Redondo was a fellow of the Fundación Mutua Madrileña Automovilística

    Clinical and Pathological Characteristics and Outcomes Among Patients With Subcutaneous Panniculitis-like T-Cell Lymphoma and Related Adipotropic Lymphoproliferative Disorders

    Get PDF
    IMPORTANCE: There is a knowledge gap about subcutaneous panniculitis-like T-cell lymphoma (SPTCL) owing to its rarity and diagnostic difficulty, resulting in an absence of well-documented large case series published to date. OBJECTIVE: To generate consensus knowledge by a joint multi-institutional review of SPTCL and related conditions. DESIGN, SETTING, AND PARTICIPANTS: This retrospective clinical and pathological review included cases initially diagnosed as SPTCL at 6 large US academic centers. All cases were reviewed by a group of pathologists, dermatologists, and oncologists with expertise in cutaneous lymphomas. Through a process of group consensus applying defined clinical and pathological diagnostic criteria, the cohort was classified as (1) SPTCL or (2) adipotropic lymphoproliferative disorder (ALPD) for similar cases with incomplete histopathological criteria for SPTCL designation. EXPOSURES: Cases of SPTCL diagnosed between 1998 and 2018. MAIN OUTCOMES AND MEASURES: The main outcome was disease presentation and evolution, including response to therapy, disease progression, and development of hemophagocytic lymphohistiocytosis. RESULTS: The cohort of 95 patients (median [range] age, 38 [2-81] years; female-to-male ratio, 2.7) included 75 cases of SPTCL and 20 cases of ALPD. The clinical presentation was similar for both groups with multiple (61 of 72 [85%]) or single (11 of 72 [15%]) tender nodules mostly involving extremities, occasionally resulting in lipoatrophy. Hemophagocytic lymphohistiocytosis (HLH) was only observed in SPTCL cases. With a mean follow-up of 56 months, 60 of 90 patients (67%) achieved complete remission with a median (range) of 3 (1-7) cumulative therapies. Relapse was common. None of the patients died of disease progression or HLH. Two patients with ALPD eventually progressed to SPTCL without associated systemic symptoms or HLH. CONCLUSIONS AND RELEVANCE: In this case series of patients initially diagnosed as having SPTCL, results showed no evidence of systemic tumoral progression beyond the adipose tissue. The SPTCL experience in this study confirmed an indolent course and favorable response to a variety of treatments ranging from immune modulation to chemotherapy followed by hematopoietic stem cell transplantation. Morbidity was primarily associated with HLH

    The emergence of classical BSE from atypical/Nor98 scrapie

    Get PDF
    Atypical/Nor98 scrapie (AS) is a prion disease of small ruminants. Currently there are no efficient measures to control this form of prion disease, and, importantly, the zoonotic potential and the risk that AS might represent for other farmed animal species remains largely unknown. In this study, we investigated the capacity of AS to propagate in bovine PrP transgenic mice. Unexpectedly, the transmission of AS isolates originating from 5 different European countries to bovine PrP mice resulted in the propagation of the classical BSE (c-BSE) agent. Detection of prion seeding activity in vitro by protein misfolding cyclic amplification (PMCA) demonstrated that low levels of the c-BSE agent were present in the original AS isolates. C-BSE prion seeding activity was also detected in brain tissue of ovine PrP mice inoculated with limiting dilutions (endpoint titration) of ovine AS isolates. These results are consistent with the emergence and replication of c-BSE prions during the in vivo propagation of AS isolates in the natural host. These data also indicate that c-BSE prions, a known zonotic agent in humans, can emerge as a dominant prion strain during passage of AS between different species. These findings provide an unprecedented insight into the evolution of mammalian prion strain properties triggered by intra- and interspecies passage. From a public health perspective, the presence of c-BSE in AS isolates suggest that cattle exposure to small ruminant tissues and products could lead to new occurrences of c-BSE.info:eu-repo/semantics/acceptedVersio

    The emergence of classical BSE from atypical/Nor98 scrapie.

    Get PDF
    Atypical/Nor98 scrapie (AS) is a prion disease of small ruminants. Currently there are no efficient measures to control this form of prion disease, and, importantly, the zoonotic potential and the risk that AS might represent for other farmed animal species remains largely unknown. In this study, we investigated the capacity of AS to propagate in bovine PrP transgenic mice. Unexpectedly, the transmission of AS isolates originating from 5 different European countries to bovine PrP mice resulted in the propagation of the classical BSE (c-BSE) agent. Detection of prion seeding activity in vitro by protein misfolding cyclic amplification (PMCA) demonstrated that low levels of the c-BSE agent were present in the original AS isolates. C-BSE prion seeding activity was also detected in brain tissue of ovine PrP mice inoculated with limiting dilutions (endpoint titration) of ovine AS isolates. These results are consistent with the emergence and replication of c-BSE prions during the in vivo propagation of AS isolates in the natural host. These data also indicate that c-BSE prions, a known zonotic agent in humans, can emerge as a dominant prion strain during passage of AS between different species. These findings provide an unprecedented insight into the evolution of mammalian prion strain properties triggered by intra- and interspecies passage. From a public health perspective, the presence of c-BSE in AS isolates suggest that cattle exposure to small ruminant tissues and products could lead to new occurrences of c-BSE.This work was funded by FEDER POCTEFA TRANSPRION (EFA282/13) and REDPRION (EFA148/16), by the UK Food Standards Agency Exploring permeability of the species barrier (M03043 and FS231051), by the European Union through FP7 222887 “Priority”, the Spanish Ministerio de Economía y Competitividad [AGL2016-78054-R (AEI/FEDER, UE). A.M.-M. was supported by a fellowship from the INIA (FPI-SGIT-2015-02), and P.A.-C. was supported by a fellowship from the Spanish Ministerio de Economía y Competitividad (BES-2010-040922)

    Dietary intake of trans fatty acids in children aged 4–5 in Spain: The INMA cohort study

    Get PDF
    Trans fatty acid (TFA) intake has been identified as a health hazard in adults, but data on preschool children are scarce. We analyzed the data from the Spanish INMA Project to determine the intake of total, industrial and natural TFA, their main sources and the associated socio-demographic and lifestyle factors in children aged 4–5 (n = 1793). TFA intake was estimated using a validated Food Frequency Questionnaire, and multiple linear regression was used to explore associated factors. The mean daily intakes of total, industrial and natural TFA were 1.36, 0.60, and 0.71 g/day, respectively. Ten percent of the children obtained >1% of their energy intake from TFA. The main sources of industrial TFA were fast food, white bread and processed baked goods. Milk, red and processed meat and processed baked goods were the main sources of natural TFA. Having parents from countries other than Spain was significantly associated with higher natural TFA (in mg/day) intake (β 45.5) and television viewing was significantly associated with higher industrial TFA intake (β 18.3). Higher fruits and vegetables intake was significantly associated with lower intakes of all TFAs, whereas higher sweetened beverages intake was significantly associated with lower total and natural TFA intake. Thus, total and industrial TFA intake was associated with less healthy food patterns and lifestyles in Spanish preschool children

    Sheep and Goat BSE Propagate More Efficiently than Cattle BSE in Human PrP Transgenic Mice

    Get PDF
    A new variant of Creutzfeldt Jacob Disease (vCJD) was identified in humans and linked to the consumption of Bovine Spongiform Encephalopathy (BSE)-infected meat products. Recycling of ruminant tissue in meat and bone meal (MBM) has been proposed as origin of the BSE epidemic. During this epidemic, sheep and goats have been exposed to BSE-contaminated MBM. It is well known that sheep can be experimentally infected with BSE and two field BSE-like cases have been reported in goats. In this work we evaluated the human susceptibility to small ruminants-passaged BSE prions by inoculating two different transgenic mouse lines expressing the methionine (Met) allele of human PrP at codon 129 (tg650 and tg340) with several sheep and goat BSE isolates and compared their transmission characteristics with those of cattle BSE. While the molecular and neuropathological transmission features were undistinguishable and similar to those obtained after transmission of vCJD in both transgenic mouse lines, sheep and goat BSE isolates showed higher transmission efficiency on serial passaging compared to cattle BSE. We found that this higher transmission efficiency was strongly influenced by the ovine PrP sequence, rather than by other host species-specific factors. Although extrapolation of results from prion transmission studies by using transgenic mice has to be done very carefully, especially when human susceptibility to prions is analyzed, our results clearly indicate that Met129 homozygous individuals might be susceptible to a sheep or goat BSE agent at a higher degree than to cattle BSE, and that these agents might transmit with molecular and neuropathological properties indistinguishable from those of vCJD. Our results suggest that the possibility of a small ruminant BSE prion as vCJD causal agent could not be ruled out, and that the risk for humans of a potential goat and/or sheep BSE agent should not be underestimated
    corecore