38 research outputs found
Disentangling fine-scale effects of environment on malaria detection and infection to design risk-based disease surveillance systems in changing landscapes
AbstractLandscape changes have complex effects on malaria transmission, disrupting social and ecological systems determining the spatial distribution of risk. Within Southeast Asia, forested landscapes are associated with both increased malaria transmission and reduced healthcare access. Here, we adapt an ecological modelling framework to identify how local environmental factors influence the spatial distributions of malaria infections, diagnostic sensitivity and detection probabilities in the Philippines. Using convenience sampling of health facility attendees and Bayesian latent process models, we demonstrate how risk-based surveillance incorporating forest data increases the probability of detecting malaria foci over three-fold and enables estimation of underlying distributions of malaria infections. We show the sensitivity of routine diagnostics varies spatially, with the decreased sensitivity in closed canopy forest areas limiting the utility of passive reporting to identify spatial patterns of transmission. By adjusting for diagnostic sensitivity and targeting spatial coverage of health systems, we develop a model approach for how to use landscape data within disease surveillance systems. Together, this illustrates the essential role of environmental data in designing risk-based surveillance to provide an operationally feasible and cost-effective method to characterise malaria transmission while accounting for imperfect detection.</jats:p
The seasonal dynamics and biting behavior of potential Anopheles vectors of Plasmodium knowlesi in Palawan, Philippines.
BACKGROUND: A small number of human cases of the zoonotic malaria Plasmodium knowlesi have been reported in Palawan Island, the Philippines. Identification of potential vector species and their bionomics is crucial for understanding human exposure risk in this setting. Here, we combined longitudinal surveillance with a trap-evaluation study to address knowledge gaps about the ecology and potential for zoonotic spillover of this macaque malaria in Palawan Island. METHODS: The abundance, diversity and biting behavior of human-biting Anopheles mosquitoes were assessed through monthly outdoor human landing catches (HLC) in three ecotypes representing different land use (forest edge, forest and agricultural area) across 8 months. Additionally, the host preference and biting activity of potential Anopheles vectors were assessed through comparison of their abundance and capture time in traps baited with humans (HLC, human-baited electrocuting net-HEN) or macaques (monkey-baited trap-MBT, monkey-baited electrocuting net-MEN). All female Anopheles mosquitoes were tested for the presence of Plasmodium parasites by PCR. RESULTS: Previously incriminated vectors Anopheles balabacensis and An. flavirostris accounted for > 95% of anophelines caught in longitudinal surveillance. However, human biting densities were relatively low (An. balabacensis: 0.34-1.20 per night, An. flavirostris: 0-2 bites per night). Biting densities of An. balabacensis were highest in the forest edge, while An. flavirostris was most abundant in the agricultural area. The abundance of An. balabacensis and An. flavirostris was significantly higher in HLC than in MBT. None of the 357 female Anopheles mosquitoes tested for Plasmodium infection were positive. CONCLUSIONS: The relatively low density and lack of malaria infection in Anopheles mosquitoes sampled here indicates that exposure to P. knowlesi in this setting is considerably lower than in neighboring countries (i.e. Malaysia), where it is now the primary cause of malaria in humans. Although anophelines had lower abundance in MBTs than in HLCs, An. balabacensis and An. flavirostris were caught by both methods, suggesting they could act as bridge vectors between humans and macaques. These species bite primarily outdoors during the early evening, confirming that insecticide-treated nets are unlikely to provide protection against P. knowlesi vectors
Enhanced health facility surveys to support malaria control and elimination across different transmission settings in the Philippines
Following substantial progress in malaria control in the Philippines, new surveillance approaches are needed to identify and target residual malaria transmission. This study evaluated an enhanced surveillance approach using rolling cross-sectional surveys of all health facility attendees augmented with molecular diagnostics and geolocation. Facility surveys were carried out in three sites representing different transmission intensities: Morong, Bataan (pre-elimination), Abra de Ilog, Occidental Mindoro (stable medium risk), and Rizal, Palawan (high risk, control). Only one rapid diagnostic test (RDT)–positive infection and no PCR confirmed infections were found in Bataan and Occidental Mindoro, suggesting the absence of transmission. In Palawan, the inclusion of all health facility attendees, regardless of symptoms, and use of molecular diagnostics identified 313 infected individuals in addition to 300 cases identified by routine screening of febrile patients with the RDT or microscopy. Of these, the majority (313/613) were subpatent infections and only detected using molecular methods. Simultaneous collection of GPS coordinates on tablet-based applications allowed real-time mapping of malaria infections. Risk factor analysis showed higher risks in children and indigenous groups, with bed net use having a protective effect. Subpatent infections were more common in men and older age-groups. Overall, malaria risks were not associated with participants’ classification, and some of the non-patient clinic attendees reported febrile illnesses (1.9%, 26/1,369), despite not seeking treatment, highlighting the widespread distribution of infection in communities. Together, these data illustrate the utility of health facility–based surveys to augment surveillance data to increase the probability of detecting infections in the wider community
Enhanced health facility surveys to support malaria control and elimination across different transmission settings in The Philippines
Abstract
Following substantial progress in malaria control in the Philippines, new surveillance approaches are needed to identify and target residual malaria transmission. This study evaluated an enhanced surveillance approach using rolling cross-sectional surveys of all health facility attendees augmented with molecular diagnostics and geolocation. Facility surveys were carried out in 3 sites representing different transmission intensities: Morong, Bataan (pre-elimination), Abra de Ilog, Occidental Mindoro (stable-medium risk) and Rizal, Palawan (high risk, control). Only 1 RDT positive infection and no PCR confirmed infections were found in Bataan and Occidental Mindoro suggesting the absence of transmission. In Rizal, inclusion of all health facility attendees, regardless of symptoms, and use of molecular diagnostics identified an additional 313 infected individuals in addition to 300 cases identified by routine screening of febrile patients with RDT or microscopy. Of these, the majority (313/613) were subpatent infections and only detected using molecular methods. Simultaneous collection of GPS coordinates on tablet-based applications allowed real-time mapping of malaria infections. Risk factor analysis showed higher risks in children and indigenous groups, with bednet use having a protective effect. Subpatent infections were more common in men and older age groups. Overall, malaria risks were not associated with patient status and some of non-patient clinic attendees reported febrile illnesses (1.9%, 26/1369) despite not seeking treatment highlighting the widespread distribution of infection in communities. Together, these data illustrate the utility of health-facility based surveys to augment surveillance data to increase the probability of detecting infections in the wider community
Association between the proportion of Plasmodium falciparum and Plasmodium vivax infections detected by passive surveillance and the magnitude of the asymptomatic reservoir in the community: a pooled analysis of paired health facility and community data.
BACKGROUND: Passively collected malaria case data are the foundation for public health decision making. However, because of population-level immunity, infections might not always be sufficiently symptomatic to prompt individuals to seek care. Understanding the proportion of all Plasmodium spp infections expected to be detected by the health system becomes particularly paramount in elimination settings. The aim of this study was to determine the association between the proportion of infections detected and transmission intensity for Plasmodium falciparum and Plasmodium vivax in several global endemic settings. METHODS: The proportion of infections detected in routine malaria data, P(Detect), was derived from paired household cross-sectional survey and routinely collected malaria data within health facilities. P(Detect) was estimated using a Bayesian model in 431 clusters spanning the Americas, Africa, and Asia. The association between P(Detect) and malaria prevalence was assessed using log-linear regression models. Changes in P(Detect) over time were evaluated using data from 13 timepoints over 2 years from The Gambia. FINDINGS: The median estimated P(Detect) across all clusters was 12·5% (IQR 5·3-25·0) for P falciparum and 10·1% (5·0-18·3) for P vivax and decreased as the estimated log-PCR community prevalence increased (adjusted odds ratio [OR] for P falciparum 0·63, 95% CI 0·57-0·69; adjusted OR for P vivax 0·52, 0·47-0·57). Factors associated with increasing P(Detect) included smaller catchment population size, high transmission season, improved care-seeking behaviour by infected individuals, and recent increases (within the previous year) in transmission intensity. INTERPRETATION: The proportion of all infections detected within health systems increases once transmission intensity is sufficiently low. The likely explanation for P falciparum is that reduced exposure to infection leads to lower levels of protective immunity in the population, increasing the likelihood that infected individuals will become symptomatic and seek care. These factors might also be true for P vivax but a better understanding of the transmission biology is needed to attribute likely reasons for the observed trend. In low transmission and pre-elimination settings, enhancing access to care and improvements in care-seeking behaviour of infected individuals will lead to an increased proportion of infections detected in the community and might contribute to accelerating the interruption of transmission. FUNDING: Wellcome Trust
フィリピンの小児デングウイルス感染症の重症化に、HLA-A*33:01アレルは防御的に働く
Dengue virus infection is a leading cause of morbidity among children in the Philippines in recent years. In order to investigate the association of HLA Class I and II alleles and dengue disease severity in a cohort of Filipino children, we performed a case control study in 2 hospitals in Metro Manila from June 2008 to December 2009. A total of 250 laboratory confirmed dengue patients and 300 healthy individuals aged 5 to 15 years old were typed for HLA-A, B and DRB1 alleles. The frequency of HLA-A*33:01 was significantly decreased in severe dengue (DHF/ DSS; Pc = 0.0016)) and DSS (Pc = 0.0032) compared to the background population. These findings support a previous study that this allele may confer protection against the severe form of dengue and provide the first evidence of HLA association with dengue in the Philippines. Future studies should be directed in investigating the possible mechanisms of protection.長崎大学学位論文 学位記番号:博(医歯薬)乙第39号 学位授与年月日:平成27年6月3日Author: Edelwisa Segubre Mercado, Fe Esperanza Espino, Ma. Lucila M. Perez, Josie M. Bilar, Jemimah Dawn P. Bajaro, Nguyen Tien Huy, Benilda Q Baello, Mihoko Kikuchi, Kenji HirayamaCitation: PLOS ONE, 10(2), e0115619; 2015Nagasaki University (長崎大学)論文博
GIS for dengue surveillance: strengthening collaborations response
We would like to thank Hsu and others for their sincere response 1 to our short review on geographical information systems (GIS) for dengue surveillance 2 ; they raised a number of important points that we would like to address..
Comparison of Three Screening Test Kits for G6PD Enzyme Deficiency: Implications for Its Use in the Radical Cure of Vivax Malaria in Remote and Resource-Poor Areas in the Philippines.
OBJECTIVE:We evaluated a battery of Glucose-6-Phosphate Dehydrogenase diagnostic point-of-care tests (PoC) to assess the most suitable product in terms of performance and operational characteristics for remote areas. METHODS:Samples were collected in Puerto Princesa City, Palawan, Philippines and tested for G6PD deficiency with a fluorescent spot test (FST; Procedure 203, Trinity Biotech, Ireland), the semiquantitative WST8/1-methoxy PMS (WST; Dojindo, Japan) and the Carestart G6PD Rapid Diagnostic Test (CSG; AccessBio, USA). Results were compared to spectrophotometry (Procedure 345, Trinity Biotech, Ireland). Sensitivity and specificity were calculated for each test with cut-off activities of 10%, 20%, 30% and 60% of the adjusted male median. RESULTS:The adjusted male median was 270.5 IU/10(12) RBC. FST and WST were tested on 621 capillary blood samples, the CSG was tested on venous and capillary blood on 302 samples. At 30% G6PD activity, sensitivity for the FST was between 87.7% (95%CI: 76.8% to 93.9%) and 96.5% (95%CI: 87.9% to 99.5%) depending on definition of intermediate results; the WST was 84.2% (95%CI: 72.1% to 92.5%); and the CSG was between 68.8% (95%CI: 41.3% to 89.0%) and 93.8% (95%CI: 69.8% to 99.8%) when the test was performed on capillary or venous blood respectively. Sensitivity of FST and CSG (tested with venous blood) were comparable (p>0.05). The analysis of venous blood samples by the CSG yielded significantly higher results than FST and CSG performed on capillary blood (p<0.05). Sensitivity of the CSG varied depending on source of blood used (p<0.05). CONCLUSION:The operational characteristics of the CSG were superior to all other test formats. Performance and operational characteristics of the CSG performed on venous blood suggest the test to be a good alternative to the FST