10 research outputs found
ATP-Dependent Lon Protease Controls Tumor Bioenergetics by Reprogramming Mitochondrial Activity
We generated mice deficient in Lon protease (LONP1), a major enzyme of the mitochondrial quality control machinery. Homozygous deletion of Lonp1 causes early embryonic lethality, whereas its haploinsufficiency protects against colorectal and skin tumors. Furthermore, LONP1 knockdown inhibits cellular proliferation and tumor and metastasis formation, whereas its overexpression increases tumorigenesis. Clinical studies indicate that high levels of LONP1 are a poor prognosis marker in human colorectal cancer and melanoma. Additionally, functional analyses show that LONP1 plays a key role in metabolic reprogramming by remodeling OXPHOS complexes and protecting against senescence. Our findings demonstrate the relevance of LONP1 for cellular and organismal viability and identify this protease as a central regulator of mitochondrial activity in oncogenesis
Autophagy-linked plasma and lysosomal membrane protein PLAC8 is a key host factor for SARS-CoV-2 entry into human cells
Better understanding on interactions between SARS-CoV-2andhost cells should help to identify host factors that may be tar-getable to combat infection and COVID-19pathology. To this end,we have conducted a genome-wide CRISPR/Cas9-based loss-of-function screen in human lung cancer cells infected with SARS-CoV-2-pseudotyped lentiviruses. Our results recapitulate manyfindings from previous screens that used full SARS-CoV-2viruses,but also unveil two novel critical host factors: the lysosomal effluxtransporter SPNS1and the plasma and lysosomal membrane pro-tein PLAC8. Functional experiments with full SARS-CoV-2virusesconfirm that loss-of-function of these genes impairs viral entry.We find that PLAC8is a key limiting host factor, whose overexpres-sion boosts viral infection in eight different human lung cancer celllines. Using single-cell RNA-Seq data analyses, we demonstratethat PLAC8is highly expressed in ciliated and secretory cells of therespiratory tract, as well as in gut enterocytes, cell types that arehighly susceptible to SARS-CoV-2infection. Proteomics and cellbiology studies suggest that PLAC8and SPNS1regulate theautophagolysosomal compartment and affect the intracellular fateof endocytosed virions.This work was supported by Instituto de Salud Carlos III(COV20/00652, MS19/00100, PI20/01267, COV20/00571 and PT17/0019/0003), Ministerio de Ciencia e Innovación (Spain) (PDI2020-118394RB-100, SAF2017-87655-R, PID2021-127534OB-100, and PGC2018-097019-B-I00), “laCaixa” Banking Foundation (HR17-00247) and Consejería de Ciencia, Innovación y Universidad del Gobierno del Principado de Asturias (AYUD/2021/57167). D.R.V and D.M are supported by PhD fellowships from Ministerio de Ciencia e Innovación(Spain).Peer reviewe
Molecular reconstruction of a fungal genetic code alteration
Fungi of the CTG clade translate the Leu CUG codon as Ser. This genetic code alteration is the only eukaryotic sense-to-sense codon reassignment known to date, is mediated by an ambiguous serine tRNA (tRNACAG(Ser)), exposes unanticipated flexibility of the genetic code and raises major questions about its selection and fixation in this fungal lineage. In particular, the origin of the tRNACAG(Ser) and the evolutionary mechanism of CUG reassignment from Leu to Ser remain poorly understood. In this study, we have traced the origin of the tDNACAG(Ser) gene and studied critical mutations in the tRNACAG(Ser) anticodon-loop that modulated CUG reassignment. Our data show that the tRNACAG(Ser) emerged from insertion of an adenosine in the middle position of the 5'-CGA-3'anticodon of a tRNACGA(Ser) ancestor, producing the 5'-CAG-3' anticodon of the tRNACAG(Ser), without altering its aminoacylation properties. This mutation initiated CUG reassignment while two additional mutations in the anticodon-loop resolved a structural conflict produced by incorporation of the Leu 5'-CAG-3'anticodon in the anticodon-arm of a tRNA(Ser). Expression of the mutant tRNACAG(Ser) in yeast showed that it cannot be expressed at physiological levels and we postulate that such downregulation was essential to maintain Ser misincorporation at sub-lethal levels during the initial stages of CUG reassignment. We demonstrate here that such low level CUG ambiguity is advantageous in specific ecological niches and we propose that misreading tRNAs are targeted for degradation by an unidentified tRNA quality control pathway.D.D.M. was financially supported by FCT (PhD grant SFRH/BD/2006/27867). We thank Rita Rocha for her help with SerRS purification. This study was funded by FEDER/ FCT projects PTDC/BIA-MIC/099826/2008 and PTDC/ BIA-GEN/110383/2009.publishe
Wnt9a deficiency discloses a repressive role of Tcf7l2 on endocrine differentiation in the embryonic pancreas
Transcriptional and signaling networks establish complex cross-regulatory interactions that drive cellular differentiation during development. Using microarrays we identified the gene encoding the ligand Wnt9a as a candidate target of Neurogenin3, a basic helix-loop-helix transcription factor that functions as a master regulator of pancreatic endocrine differentiation. Here we show that Wnt9a is expressed in the embryonic pancreas and that its deficiency enhances activation of the endocrine transcriptional program and increases the number of endocrine cells at birth. We identify the gene encoding the endocrine transcription factor Nkx2-2 as one of the most upregulated genes in Wnt9a-ablated pancreases and associate its activation to reduced expression of the Wnt effector Tcf7l2. Accordingly, in vitro studies confirm that Tcf7l2 represses activation of Nkx2-2 by Neurogenin3 and inhibits Nkx2-2 expression in differentiated β-cells. Further, we report that Tcf7l2 protein levels decline upon initiation of endocrine differentiation in vivo, disclosing the downregulation of this factor in the developing endocrine compartment. These findings highlight the notion that modulation of signalling cues by lineage-promoting factors is pivotal for controlling differentiation programs.This work has been supported by the Spanish Ministerio de Ciencia e Innovación (BFU2008-02299/BMC to RGa), Ministerio de Economía y Competitividad/Instituto de Salud Carlos III (PI13/01500 to RGa) and Generalitat de Catalunya (2014 SGR659 to RGo). Predoctoral fellowships were provided by the Spanish Ministerio de Ciencia e Innovación (BES-2007- 17284, GP) and IDIBAPS (ME). The research leading to these results has received funding from the European Community’s Seventh Framework Programme (FP7/2009-2013) under the grant agreement n°229673 (SC). CIBERDEM (Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas) is an initiative of the Instituto de Salud Carlos III
Recommended from our members
Prelamin A causes aberrant myonuclear arrangement and results in muscle fiber weakness.
Physiological and premature aging are frequently associated with an accumulation of prelamin A, a precursor of lamin A, in the nuclear envelope of various cell types. Here, we aimed to underpin the hitherto unknown mechanisms by which prelamin A alters myonuclear organization and muscle fiber function. By experimentally studying membrane-permeabilized myofibers from various transgenic mouse lines, our results indicate that, in the presence of prelamin A, the abundance of nuclei and myosin content is markedly reduced within muscle fibers. This leads to a concept by which the remaining myonuclei are very distant from each other and are pushed to function beyond their maximum cytoplasmic capacity, ultimately inducing muscle fiber weakness