40 research outputs found

    Exact diffraction calculation from fields specified over arbitrary curved surfaces

    Get PDF
    Cataloged from PDF version of article.Calculation of the scalar diffraction field over the entire space from a given field over a surface is an important problem in computer generated holography. A straightforward approach to compute the diffraction field from field samples given on a surface is to superpose the emanated fields from each such sample. In this approach, possible mutual interactions between the fields at these samples are omitted and the calculated field may be significantly in error. In the proposed diffraction calculation algorithm, mutual interactions are taken into consideration, and thus the exact diffraction field can be calculated. The algorithm is based on posing the problem as the inverse of a problem whose formulation is straightforward. The problem is then solved by a signal decomposition approach. The computational cost of the proposed method is high, but it yields the exact scalar diffraction field over the entire space from the data on a surface. © 2011 Elsevier B.V. All rights reserved

    Diffraction field computation from arbitrarily distributed data points in space

    Get PDF
    Cataloged from PDF version of article.Computation of the diffraction field from a given set of arbitrarily distributed data points in space is an important signal processing problem arising in digital holographic 3D displays. The field arising from such distributed data points has to be solved simultaneously by considering all mutual couplings to get correct results. In our approach, the discrete form of the plane wave decomposition is used to calculate the diffraction field. Two approaches, based on matrix inversion and on projections on to convex sets (POCS), are studied. Both approaches are able to obtain the desired field when the number of given data points is larger than the number of data points on a transverse cross-section of the space. The POCS-based algorithm outperforms the matrix-inversion-based algorithm when the number of known data points is large. (C) 2006 Elsevier B.V. All rights reserved

    Platform session

    Get PDF

    Transits of Known Planets Orbiting a Naked-Eye Star

    Get PDF
    © 2020 The American Astronomical Society. All rights reserved.Some of the most scientifically valuable transiting planets are those that were already known from radial velocity (RV) surveys. This is primarily because their orbits are well characterized and they preferentially orbit bright stars that are the targets of RV surveys. The Transiting Exoplanet Survey Satellite (TESS) provides an opportunity to survey most of the known exoplanet systems in a systematic fashion to detect possible transits of their planets. HD 136352 (Nu2 Lupi) is a naked-eye (V = 5.78) G-type main-sequence star that was discovered to host three planets with orbital periods of 11.6, 27.6, and 108.1 days via RV monitoring with the High Accuracy Radial velocity Planet Searcher (HARPS) spectrograph. We present the detection and characterization of transits for the two inner planets of the HD 136352 system, revealing radii of 1.482-0.056+0.058 R ⊕ and 2.608-0.077+0.078 R ⊕ for planets b and c, respectively. We combine new HARPS observations with RV data from the Keck/High Resolution Echelle Spectrometer and the Anglo-Australian Telescope, along with TESS photometry from Sector 12, to perform a complete analysis of the system parameters. The combined data analysis results in extracted bulk density values of ρb = 7.8-1.1+1.2 g cm-3 and ρc = 3.50-0.36+0.41 g cm-3 for planets b and c, respectively, thus placing them on either side of the radius valley. The combination of the multitransiting planet system, the bright host star, and the diversity of planetary interiors and atmospheres means this will likely become a cornerstone system for atmospheric and orbital characterization of small worlds.Peer reviewe
    corecore