5 research outputs found

    Encapsulation of two different TLR ligands into liposomes confer protective immunity and prevent tumor development

    No full text
    Nucleic acid-based Toll-like receptor (TLR) ligands are promising adjuvants and immunotherapeutic agents. Combination of TLR ligands potentiates immune response by providing synergistic immune activity via triggering different signaling pathways and may impact antigen dependent T-cell immune memory. However, their short circulation time due to nuclease attack hampers their clinical performance. Liposomes offer inclusion of protein and nucleic acid-based drugs with high encapsulation efficiency and drug loading. Furthermore, they protect cargo from enzymatic cleavage while providing stability, and enhancing biological activity. Herein, we aimed to develop a liposomal carrier system co-encapsulating TLR3 (polyinosinic-polycytidylic acid; poly(I:C)) and TLR9 (oligodeoxynucleotides (ODN) expressing unmethylated CpG motifs; CpG ODN) ligands as immunoadjuvants together with protein antigen. To demonstrate that this depot system not only induce synergistic innate immune activation but also boost antigen-dependent immune response, we analyzed the potency of dual ligand encapsulated liposomes in long-term cancer protection assay. Data revealed that CpG ODN and poly(I:C) co-encapsulation significantly enhanced cytokine production from spleen cells. Activation and maturation of dendritic cells as well as bactericidal potency of macrophages along with internalization capacity of ligands were elevated upon incubation with liposomes co-encapsulating CpG ODN and poly(I:C). Immunization with co-encapsulated liposomes induced OVA-specific Th1-biased immunity which persisted for eight months post-booster injection. Subsequent challenge with OVA-expressing tumor cell line, E.G7, demonstrated that mice immunized with liposomes co-encapsulating dual ligands had significantly slower tumor progression. Tumor clearance was dependent on OVA-specific cytotoxic memory T-cells. These results suggest that liposomes co-encapsulating TLR3 and TLR9 ligands and a specific cancer antigen could be developed as a preventive cancer vaccine

    Dual-adjuvant effect of pH-sensitive liposomes loaded with STING and TLR9 agonists regress tumor development by enhancing Th1 immune response

    No full text
    Nucleic acid-based pattern recognition receptor agonists are effective adjuvants and immunotherapeutic agents. Rather than single applications, ligand combinations could synergistically potentiate immune responses by elevating cytokine and chemokine production via triggering multiple signaling pathways. However, short half-lives of such labile ligands due to nuclease attack and limited cellular uptake due to their structure significantly hamper their in vivo performances. More importantly, simultaneous delivery and activity presentation of protein antigen and nucleic acid ligands critically limit the clinical development of these constructs. In this work, we approached this problem by co-encapsulating a model antigen ovalbumin along with TLR9 and STING ligands within liposomes, a well-established drug delivery system that enables payload stability and enhanced cellular activity upon internalization. Moreover, by loading dual ligands we postulated to achieve heightened Th-1 immune response that would yield pronounced protective vaccine efficacy. We show that, pH-sensitive liposomes co-encapsulating CpG ODN and cGAMP induced synergistic innate immune response by elevating type I and type II interferon levels. Most importantly, this vaccine formulation led to similar to 70% regression of established melanoma tumor. pH-sensitive liposomal vaccine administration elevated IgG2c/IgG1 antibody ratio, indicative of augmented OVA-specific Th1-biased immunity. Importantly, while the frequency of tumor-specific IFN-gamma producing CD8(+) T-cells was significantly increased, the M2-type anti-inflammatory macrophage levels were decreased in the tumor bed. In conclusion, our strategy induces reversal of immunosuppressive tumor microenvironment, while enhancing effective anti-tumor immune-response. We propose that this could be coupled with standard therapies during combating tumor eradication

    Human Gut Commensal Membrane Vesicles Modulate Inflammation by Generating M2-like Macrophages and Myeloid-Derived Suppressor Cells

    No full text
    Immunomodulatory commensal bacteria modify host immunity through delivery of regulatory microbial-derived products to host cells. Extracellular membrane vesicles (MVs) secreted from symbiont commensals represent one such transport mechanism. How MVs exert their anti-inflammatory effects or whether their tolerance-inducing potential can be used for therapeutic purposes remains poorly defined. In this study, we show that MVs isolated from the human lactic acid commensal bacteria Pediococcus pentosaceus suppressed Ag-specific humoral and cellular responses. MV treatment of bone marrow-derived macrophages and bone marrow progenitors promoted M2-like macrophage polarization and myeloid-derived suppressor cell differentiation, respectively, most likely in a TLR2-dependent manner. Consistent with their immunomodulatory activity, MV-differentiated cells upregulated expression of IL-10, arginase-1, and PD-L1 and suppressed the proliferation of activated T cells. MVs' antiinflammatory effects were further tested in acute inflammation models in mice. In carbon tetrachloride-induced fibrosis and zymosan-induced peritonitis models, MVs ameliorated inflammation. In the dextran sodium sulfate-induced acute colitis model, systemic treatment with MVs prevented colon shortening and loss of crypt architecture. In an excisional wound healing model, i.p. MV administration accelerated wound closure through recruitment of PD-L1-expressing myeloid cells to the wound site. Collectively, these results indicate that P pentosaceus-derived MVs hold promise as therapeutic agents in management/treatment of inflammatory conditions

    Encapsulation of two different TLR ligands into liposomes confer protective immunity and prevent tumor development

    No full text
    Nucleic acid-based Toll-like receptor (TLR) ligands are promising adjuvants and immunotherapeutic agents. Combination of TLR ligands potentiates immune response by providing synergistic immune activity via triggering different signaling pathways and may impact antigen dependent T-cell immune memory. However, their short circulation time due to nuclease attack hampers their clinical performance. Liposomes offer inclusion of protein and nucleic acid-based drugs with high encapsulation efficiency and drug loading. Furthermore, they protect cargo from enzymatic cleavage while providing stability, and enhancing biological activity. Herein, we aimed to develop a liposomal carrier system co-encapsulating TLR3 (polyinosinic-polycytidylic acid; poly(I:C)) and TLR9 (oligodeoxynucleotides (ODN) expressing unmethylated CpG motifs; CpG ODN) ligands as immunoadjuvants together with protein antigen. To demonstrate that this depot system not only induce synergistic innate immune activation but also boost antigen-dependent immune response, we analyzed the potency of dual ligand encapsulated liposomes in long-term cancer protection assay. Data revealed that CpG ODN and poly(I:C) co-encapsulation significantly enhanced cytokine production from spleen cells. Activation and maturation of dendritic cells as well as bactericidal potency of macrophages along with internalization capacity of ligands were elevated upon incubation with liposomes co-encapsulating CpG ODN and poly(I:C). Immunization with co-encapsulated liposomes induced OVA-specific Th1-biased immunity which persisted for eight months post-booster injection. Subsequent challenge with OVA-expressing tumor cell line, E.G7, demonstrated that mice immunized with liposomes co-encapsulating dual ligands had significantly slower tumor progression. Tumor clearance was dependent on OVA-specific cytotoxic memory T-cells. These results suggest that liposomes co-encapsulating TLR3 and TLR9 ligands and a specific cancer antigen could be developed as a preventive cancer vaccine

    Type I Ifn-Related Netosis In Ataxia Telangiectasia And Artemis Deficiency

    Get PDF
    Background: Pathological inflammatory syndromes of unknown etiology are commonly observed in ataxia telangiectasia (AT) and Artemis deficiency. Similar inflammatory manifestations also exist in patients with STING-associated vasculopathy in infancy (SAVI). Objective: We sought to test the hypothesis that the inflammation-associated manifestations observed in patients with AT and Artemis deficiency stem from increased type I IFN signature leading to neutrophil-mediated pathological damage. Methods: Cytokine/protein signatures were determined by ELISA, cytometric bead array, or quantitative PCR. Stat1 phosphorylation levels were determined by flow cytometry. DNA species accumulating in the cytosol of patients' cells were quantified microscopically and flow cytometrically. Propensity of isolated polymorhonuclear granulocytes to form neutrophil extracellular traps (NETs) was determined using fluorescence microscopy and picogreen assay. Neutrophil reactive oxygen species levels and mitochondrial stress were assayed using fluorogenic probes, microscopy, and flow cytometry. Results: Type I and III IFNsignatures were elevated in plasma and peripheral blood cells of patients with AT, Artemis deficiency, and SAVI. Chronic IFN production stemmed fromthe accumulation of DNA in the cytoplasm of ATand Artemis-deficient cells. Neutrophils isolated from patients spontaneously produced NETs and displayed indicators of oxidative and mitochondrial stress, supportive of theirNETotic tendencies. Asimilar phenomenonwas also observed in neutrophils from healthy controls exposed to patient plasma samples or exogeneous IFN-alpha. Conclusions: Type I IFN-mediated neutrophil activation and NET formation may contribute to inflammatory manifestations observed in patients with AT, Artemis deficiency, and SAVI. Thus, neutrophils represent a promising target to manage inflammatory syndromes in diseases with active type I IFN signature.Wo
    corecore