334 research outputs found

    Pressure-induced phase transitions in AgClO4

    Get PDF
    AgClO4 has been studied under compression by x-ray diffraction and density functional theory calculations. Experimental evidence of a structural phase transition from the tetragonal structure of AgClO4 to an orthorhombic barite-type structure has been found at 5.1 GPa. The transition is supported by total-energy calculations. In addition, a second transition to a monoclinic structure is theoretically proposed to take place beyond 17 GPa. The equation of state of the different phases is reported as well as the calculated Raman-active phonons and their pressure evolution. Finally, we provide a description of all the structures of AgClO4 and discuss their relationships. The structures are also compared with those of AgCl in order to explain the structural sequence determined for AgClO4.Comment: 38 pages, 11 figures, 4 table

    Optical absorption of divalent metal tungstates: Correlation between the band-gap energy and the cation ionic radius

    Full text link
    We have carried out optical-absorption and reflectance measurements at room temperature in single crystals of AWO4 tungstates (A = Ba, Ca, Cd, Cu, Pb, Sr, and Zn). From the experimental results their band-gap energy has been determined to be 5.26 eV (BaWO4), 5.08 eV (SrWO4), 4.94 eV (CaWO4), 4.15 eV (CdWO4), 3.9-4.4 eV (ZnWO4), 3.8-4.2 eV (PbWO4), and 2.3 eV (CuWO4). The results are discussed in terms of the electronic structure of the studied tungstates. It has been found that those compounds where only the s electron states of the A2+ cation hybridize with the O 2p and W 5d states (e.g BaWO4) have larger band-gap energies than those where also p, d, and f states of the A2+ cation contribute to the top of the valence band and the bottom of the conduction band (e.g. PbWO4). The results are of importance in view of the large discrepancies existent in prevoiusly published data.Comment: 16 pages, 3 figures, 1 tabl

    Pressure-induced alpha-to-omega transition in titanium metal: A systematic study of the effects of uniaxial stress

    Full text link
    We investigated the effects of uniaxial stress on the pressure-induced alpha-to-omega transition in pure titanium (Ti) by means of angle dispersive x-ray diffraction in a diamond-anvil cell. Experiments under four different pressure environments reveal that: (1) the onset of the transition depends on the pressure medium used, going from 4.9 GPa (no pressure medium) to 10.5 GPa (argon pressure medium); (2) the a and w phases coexist over a rather large pressure range, which depends on the pressure medium employed; (3) the hysteresis and quenchability of the w phase is affected by differences in the sample pressure environment; and (4) a short term laser-heating of Ti lowers the alpha-to-omega transition pressure. Possible transition mechanisms are discussed in the light of the present results, which clearly demonstrated the influence of uniaxial stress in the alpha-to-omega transition.Comment: 16 pages, 6 figures, 1 tabl

    Petrología y geoquímica de las tonalitas de Villarejo de Montalbán

    Get PDF
    [ES] Las tonalitas de Villarejo de Montalbán son rocas ricas en biotita en las que se observan segregados más félsicos con abundante titanita. Los datos geoquímicos e isotópicos de roca total ((87Sr/86Sr)300 = 0,7084-0,7089; εNd = -4,79, -4,80) sugieren que el magma tonalítico se formó por fusión de rocas metaígneas de composición básica/intermedia (anfibolitas o granulitas). A su vez, los segregados félsicos parecen haberse formado por acumulación del magma residual diferenciado a partir de una matriz formada sobre todo por plagioclasa y biotita. Las condiciones de cristalización estimadas por geotermobarometría del anfíbol indican temperaturas de 890- 920ºC, y presiones de 1,3-2,4 kbar, las cuales implican niveles aproximados de emplazamiento cercanos a los 5-10 km de profundidad. [EN] The tonalites of Villarejo de Montalbán are biotite-rich rocks showing felsic segregates with abundant titanite. Whole-rock geochemical and isotopic data ((87Sr/86Sr)300 = 0.7084-0.7089; εNd = -4.79, -4.80) suggest that the tonalitic magma was formed by melting of metaigneous rocks of basic/intermediate composition (amphibolites or granulites). At the same time, the felsic segregates seem to have formed through the accumulation of a differentiated residual magma after crystal fractionation of plagioclase and biotite. Crystallization conditions estimated according to amphibole geothermobarometry indicate temperatures between 890 and 920ºC, and pressures in the range 1.3-2.4 kbar, which is in accordance with an approximate emplacement level close to 5-10 km deep.Peer Reviewe

    High-pressure x-ray diffraction study of bulk and nanocrystalline PbMoO4

    Full text link
    We studied the effects of high-pressure on the crystalline structure of bulk and nanocrystalline scheelite-type PbMoO4. We found that in both cases the compressibility of the materials is highly non-isotropic, being the c-axis the most compressible one. We also observed that the volume compressibility of nanocrystals becomes higher that the bulk one at 5 GPa. In addition, at 10.7(8) GPa we observed the onset of an structural phase transition in bulk PbMoO4. The high-pressure phase has a monoclinic structure similar to M-fergusonite. The transition is reversible and not volume change is detected between the low- and high-pressure phases. No additional structural changes or evidence of decomposition are found up to 21.1 GPa. In contrast nanocrystalline PbMoO4 remains in the scheelite structure at least up to 16.1 GPa. Finally, the equation of state for bulk and nanocrystalline PbMoO4 are also determined.Comment: 18 pages, 4 figure

    Melting line of calcium characterized by in situ LH-DAC XRD and first-principles calculations

    Get PDF
    In this work, the melting line of calcium has been characterized both experimentally, using synchrotron X-ray diffraction in laser-heated diamond-anvil cells, and theoretically, using first-principles calculations. In the investigated pressure and temperature range (pressure between 10 and 40 GPa and temperature between 300 and 3000 K) it was possible to observe the face-centred phase of calcium and to confirm (and characterize for the first time at these conditions) the presence of the body-centred cubic and the simple cubic phase of calcium. The melting points obtained with the two techniques are in excellent agreement. Furthermore, the present results agree with the only existing melting line of calcium obtained in laser-heated diamond anvil cells, using the speckle method as melting detection technique. They also confirm a flat slope of the melting line in the pressure range between 10 and 30 GPa. The flat melting curve is associated with the presence of the solid high-temperature body-centered cubic phase of calcium and to a small volume change between this phase and the liquid at melting. Reasons for the stabilization of the body-centered face at high-temperature conditions will be discussed

    The high-pressure behavior of CaMoO4

    Full text link
    We report a high-pressure study of tetragonal scheelite-type CaMoO4 up to 29 GPa. In order to characterize its high-pressure behavior, we have combined Raman and optical-absorption measurements with density-functional theory calculations. We have found evidence of a pressure-induced phase transition near 15 GPa. Experiments and calculations agree in assigning the high-pressure phase to a monoclinic fergusonite-type structure. The reported results are consistent with previous powder x-ray-diffraction experiments, but are in contradiction with the conclusions obtained from earlier Raman measurements, which support the existence of more than one phase transition in the pressure range covered by our studies. The observed scheelite-fergusonite transition induces significant changes in the electronic band gap and phonon spectrum of CaMoO4. We have determined the pressure evolution of the band gap for the low- and high-pressure phases as well as the frequencies and pressure dependences of the Raman-active and infrared-active modes. In addition, based upon calculations of the phonon dispersion of the scheelite phase, carried out at a pressure higher than the transition pressure, we propose a possible mechanism for the reported phase transition. Furthermore, from the calculations we determined the pressure dependence of the unit-cell parameters and atomic positions of the different phases and their room-temperature equations of state. These results are compared with previous experiments showing a very good agreement. Finally, information on bond compressibility is reported and correlated with the macroscopic compressibility of CaMoO4. The reported results are of interest for the many technological applications of this oxide.Comment: 36 pages, 10 figures, 8 table
    corecore