14 research outputs found

    Methodical selection of thermal conductivity models for porous silica-based media with variation of gas type and pressure

    Get PDF
    If the effective thermal conductivity of a silica powder in any gas atmosphere is to be calculated analytically, one is faced with a whole series of decisions. There are a lot of different models for the gas thermal conductivity in the pores, the thermal accommodation coefficient or the effective thermal conductivity itself in the literature. Furthermore, it has to be decided which input parameters should be used. This paper gives an overview and recommendations as to which calculation methods are best suited for the material classes of precipitated silica, fumed silica, silica gel and glass spheres. All combinations of the described methods result in a total of 2800 calculation models which are compared with pressure-dependent thermal conductivity measurements of 15 powdery materials with 7 different gases using Matlab computations. The results show that with a model based on a spherical unit cell, which considers local Knudsen numbers, the measuring points of all powder-gas combinations can be determined best with an average variance of about 18.5%. If the material class is known beforehand, the result can be predicted with an average accuracy of about 10% with the correspondingly determined methods

    Passive room conditioning using phase change materials—Demonstration of a long-term real size experiment

    Get PDF
    The thermal properties of lightweight buildings can be efficiently improved by using phase change materials (PCMs). The heat storage capacity of the building can be extended exactly at the desired temperature level, which leads to an enormous increase in residential comfort. This is shown in the present paper using the example of a prefabricated wooden house. The house was divided into two identical rooms. One of them was equipped with almost one ton of phase change material based on salt hydrates with a melting temperature of approx. 21°C. The material was encapsulated in 1-l Polyethylene containers and installed in two back-ventilated layers inside of the walls. The house was monitored for a period of 87 days in terms of temperatures, solar radiation and air velocity inside the PCM wall system. A considerable temperature buffering could be observed in the PCM room compared to the reference room. An overall reduction of the temperature fluctuations of 57% and a reduction of the day/night fluctuations of 62% compared to the reference room could be obtained. In addition, a prediction regarding the energy demand of such buildings is discussed on the basis of a simulation program. Thus, the annual cooling capacity can be reduced by 36.5% compared to the regular timber construction technique by introducing PCM. Furthermore, the good correlation of the simulation results with the experimental ones allows using the simulation as a tool to design a house with additional thermal storages

    Empirical investigation to explore potential gains from the amalgamation of Phase Changing Materials (PCMs) and wood shavings

    Get PDF
    The reduction of gained heat, heat peak shifting and the mitigation of air temperature fluctuations are some desirable properties that are sought after in any thermal insulation system. It cannot be overstated that these factors, in addition to others, govern the performance of such systems thus their effect on indoor ambient conditions. The effect of such systems extends also to Heating, Ventilation and Air-conditioning (HVAC) systems that are set up to operate optimally in certain conditions. Where literature shows that PCMs and natural materials such as wood-shavings can provide efficient passive insulation for buildings, it is evident that such approaches utilise methods that are of a degree of intricacy which requires specialist knowledge and complex techniques, such as micro-encapsulation for instance. With technical and economic aspects in mind, an amalgam of PCM and wood-shavings has been created for the purpose of being utilised as a feasible thermal insulation. The amalgamation was performed in the simplest of methods, through submerging the wood shavings in PCM. An experimental procedure was devised to test the thermal performance of the amalgam and compare this to the performance of the same un-amalgamated materials. Comparative analysis revealed that no significant thermal gains would be expected from such amalgamation. However, significant reduction in the total weight of the insulation system would be achieved that, in this case, shown to be up to 20.94%. Thus, further reducing possible strains on structural elements due to the application of insulation on buildings. This can be especially beneficial in vernacular architectural approaches where considerably large amounts and thicknesses of insulations are used. In addition, cost reduction could be attained as wood shavings are significantly cheaper compared to the cost of PCMs

    Thermal accommodation in nanoporous silica for vacuum insulation panels

    Get PDF
    The thermal accommodation coefficient is a measure for the quality of thermal energy exchange between gas molecules and a solid surface. It is an important parameter to describe heat flow in rarefied gases, for example, in aerospace or vacuum technology. As special application, it plays a decisive role for the thermal transport theory in silica filled vacuum insulation panels. So far, no values have been available for the material pairings of silica and various gases. For that reason, this paper presents thermal conductivity measurements under different gas-pressure conditions for precipitated and fumed silica in combination with the following gases: helium, air, argon, carbon dioxide (CO2_{2}), sulfur dioxide (SO2_{2}), krypton, and sulfur hexafluoride (SF6_{6}). Additionally, a calculation method for determining thermal accommodation coefficients from the thermal conductivity curves in combination with the pore size distribution of silica determined by mercury intrusion porosimetry is introduced. The results are compared with existing models

    Circadian course of the P300 ERP in patients with amyotrophic lateral sclerosis - implications for brain-computer interfaces (BCI)

    Get PDF
    Background: Accidents or neurodegenerative diseases like amyotrophic lateral sclerosis (ALS) can lead to progressing, extensive, and complete paralysis leaving patients aware but unable to communicate (locked-in state). Brain-computer interfaces (BCI) based on electroencephalography represent an important approach to establish communication with these patients. The most common BCI for communication rely on the P300, a positive deflection arising in response to rare events. To foster broader application of BCIs for restoring lost function, also for end-users with impaired vision, we explored whether there were specific time windows during the day in which a P300 driven BCI should be preferably applied. Methods: The present study investigated the influence of time of the day and modality (visual vs. auditory) on P300 amplitude and latency. A sample of 14 patients (end-users) with ALS and 14 healthy age matched volunteers participated in the study and P300 event-related potentials (ERP) were recorded at four different times (10, 12 am, 2, & 4 pm) during the day. Results: Results indicated no differences in P300 amplitudes or latencies between groups (ALS patients v. healthy participants) or time of measurement. In the auditory condition, latencies were shorter and amplitudes smaller as compared to the visual condition. Conclusion: Our findings suggest applicability of EEG/BCI sessions in patients with ALS throughout normal waking hours. Future studies using actual BCI systems are needed to generalize these findings with regard to BCI effectiveness/efficiency and other times of day
    corecore