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Abstract

Background: Accidents or neurodegenerative diseases like amyotrophic lateral sclerosis (ALS) can lead to
progressing, extensive, and complete paralysis leaving patients aware but unable to communicate (locked-in
state). Brain-computer interfaces (BCI) based on electroencephalography represent an important approach to
establish communication with these patients. The most common BCI for communication rely on the P300, a
positive deflection arising in response to rare events. To foster broader application of BCIs for restoring lost
function, also for end-users with impaired vision, we explored whether there were specific time windows
during the day in which a P300 driven BCI should be preferably applied.

Methods: The present study investigated the influence of time of the day and modality (visual vs. auditory)
on P300 amplitude and latency. A sample of 14 patients (end-users) with ALS and 14 healthy age matched
volunteers participated in the study and P300 event-related potentials (ERP) were recorded at four different
times (10, 12 am, 2, & 4 pm) during the day.

Results: Results indicated no differences in P300 amplitudes or latencies between groups (ALS patients v.
healthy participants) or time of measurement. In the auditory condition, latencies were shorter and amplitudes smaller
as compared to the visual condition.

Conclusion: Our findings suggest applicability of EEG/BCI sessions in patients with ALS throughout normal waking
hours. Future studies using actual BCI systems are needed to generalize these findings with regard to BCI effectiveness/
efficiency and other times of day.
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Background
For people with advanced neurodegenerative diseases or
in states of severely reduced mobility due to accidents or
illness, a brain-computer-interface (BCI) might be the
only means to communicate with their environment. A
BCI uses brain signals most often recorded with electro-
encephalography (EEG) and converts them into control
signals replacing, restoring, or enhancing the natural

output of the central nervous system the patient (end-
user of BCI technology) is no longer able to perform [1]
(see also the BNCI H2020 roadmap). For example, the
so-called P300-speller, a BCI application to allow the
spelling of words on a computer screen, is one of the
most commonly used devices and has been applied in
healthy participants as well as in patients [2–6]. It relies
on a positive deflection about 300 ms after a rare
stimulus in a visual oddball paradigm comprising ir-
relevant frequent and relevant rare (target) stimuli
(P300 ERP, [7, 8]).
In addition to the visually based P300 speller, there

have also been efforts to design a BCI solely relying on
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auditory stimuli for users with impaired vision or eye
gaze control [9–15]. Until recently, auditory BCIs faced
the problem of a limited amount of classes, i.e. differen-
tiable choices they present to the end-user of BCI [16].
However, Höhne and Tangermann introduced the Char-
Streamer system, which is based on 30 spoken sounds of
letters and actions and demonstrated a competitive
spelling speed. Halder and colleagues [17] showed that
even patients with severe motor impairment including
those with amyotrophic lateral sclerosis (ALS) could
control an auditory speller with high accuracy provided
several training sessions.
Patients with neurodegenerative diseases, specifically

those diagnosed with ALS are a major target group for
BCIs. ALS affects neurons of the motor system and
beyond, leading to progressing muscle weakness and
atrophy [18]. In its late stages, patients are left unable to
move or breathe while being fully aware of themselves
and the environment. Thus, for these patients a BCI
solely relying on brain activity may be the only way to
communicate their thoughts and wishes.
In general, BCI performance is not only influenced by

soft- and hardware factors, e.g. choice of equipment and
classifiers, but also by physiological and psychological
variables related to the generation of the EEG input sig-
nal [19]. For example, the frequently used P300 ERP
depends on attention and working memory processes
[20, 21], with reduced attention / high working memory
load being associated with lower amplitudes and pro-
longed latencies [22]. In addition to motor impairment,
patients with ALS may also experience respiratory dys-
function, disrupted sleep, and fatigue [23], which in turn
may limit attentional and working memory performance
[24]. However, it is unclear how relevant these findings
are in an applied setting; some studies reporting P300
amplitudes comparable between healthy participants and
ALS patients, and others showing reduced P300 ampli-
tudes in patients with ALS [25–27]. Similarly, some
studies found prolonged latencies in ALS [27, 28], while
others revealed no such difference [29, 30].
Given the objective of BCIs to become a viable means

for long-term home based communication in patients
with ALS, a second potentially important factor con-
cerns the sensitivity of attention and working memory to
circadian variation. Whereas behavioral measures of
these processes generally indicate declining performance
throughout the day [31], it is unclear whether these
changes are also associated with reduced amplitudes/
prolonged latencies in the P300 ERP. Some studies of
healthy participants suggest sensitivity of the P300 to
time of day, whereas other studies found no such an
effect [32–35]. In addition, and despite its potential im-
portance, no information on the sensitivity of the P300
to time of day is available from patients with ALS.

Finally, the factor of modality may become relevant
when evaluating the suitability of a BCI for ALS patients.
For example, there is evidence that –in healthy partici-
pants-, the P300 is influenced by modality, with smaller
amplitudes and shorter latencies in the auditory domain
[36] (but see [37]). Although vision is usually unaffected
by ALS, some late stage patients are easily exhausted
when using vision based communication devices. For
these patients, reliance on the auditory modality may be
one of the few alternatives left [38]. Thus, a systematic
comparison of the P300 ERP between modalities and
time of day is warranted, as this information may be
important for researchers when scheduling EEG/BCI
sessions and other psychophysiological experiments.
To provide such data, we recorded visual and auditory

P300 in patients diagnosed with ALS and age matched
healthy participants at four different time points within
1 day in their homes. Specifically, we hypothesized that

(1)there is a decline in P300 amplitudes and an increase
in P300 latencies over time (main effect of time of
the day).

(2)the effect of the daytime is stronger in ALS patients
than in healthy controls (group x time interaction).

Data presented in this paper were taken from Ursula
Mochty’s dissertation [39] and reanalyzed.

Methods
Participants
A sample of 14 ALS patients and 14 age and sex
matched healthy control subjects participated in the
study. We only included ALS patients who were still
able to communicate a “Yes” or “No” answer in any mo-
dality, thus, no ALS patients in the complete locked-in
state were included. All participants had normal or cor-
rected to normal vision. ALS patients were between 40
and 73 years old (M =67.93, SD = 10.46), healthy partici-
pants were between 38 and 79 years of age (M = 58.07,
SD = 10.69; t = −0.034, DF = 26, p = .972). All ALS pa-
tients were assessed with the revised ALS functional rat-
ing scale (ALSFRS-R; [40]). Scores varied between 2 and
36 (M = 21.79, SD = 10.53), with lower scores indicating
more severe physical impairment.

Procedure and stimuli
The study was conducted at the participants’ home.
Participants sat in a comfortable chair with a computer
screen in front of them. The experiment consisted of
four identical sessions conducted at 10, 12 am, 2 and
4 pm. Each session lasted 12 min and started with the
recording of 4 min of resting EEG, followed by EEG
recording during a visual (4 min) and auditory oddball
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(4 min). During oddball paradigms, participants were
instructed to silently count the deviant stimuli.

Auditory oddball
Auditory stimuli were 160 standard (1000 Hz) and 40
deviant (2000 Hz) tones (rectangular pulse of 50 ms dur-
ation) presented in pseudo-random order with the
restriction that any two deviant tones were separated by
at least one standard tone. Stimulus onset asynchrony
(SOA) was 1200 ms with a random latency jitter of
± 0.15 s to avoid habituation to a certain SOA [41].

Visual oddball
Visual stimuli were short (50 ms) presentations of the
letters “H” (40 times, deviant) and “S” (160 times, stand-
ard) in white font (120 pt) on a black background in the
centre of a computer monitor [42]. Stimulus onset asyn-
chrony (SOA) was 1.2 ± 0.15 s (see above).

Data acquisition
EEG was recorded using a g-tec USB amplifier (g-tec,
Schiedlberg, Austria) with a sampling rate of 256 Hz (band-
pass filter: 0.01 and 30 Hz) from 16 electrodes placed at
Fp1, Fp2, F3, Fz, F4, T7, C3, Cz, C4, T8, CP3, CP4, P3, Pz,
P4 and Oz referenced to the right-earlobe (ground at left
mastoid). Impedances were kept below 5 kΩ.

Data processing and statistical analysis
Offline, EEG was epoched into 900 ms long intervals
beginning from −100 ms before the start of a stimulus,
corrected for eye movements [43], and aligned to the
100 ms long pre-stimulus baseline. Trials with voltages
exceeding ± 60 μV were rejected as artifacts, remaining
trials averaged per condition, and the difference obtained
(deviant – standard, see Fig. 1). This difference between
the curves elicited by the standard versus the deviant
represents the decisive factor for BCI classifiers to differ-
entiate responses by the participants. In the auditory
condition, peak positive amplitudes and latencies during
the analysis interval ranging from 290 to 350 ms post
stimulus onset were detected and exported for statistical
analysis. For the visual condition, the interval lasted
from 300 to 600 ms post stimulus onset. EEG data ana-
lysis was performed with Brain Vision Analyzer (Brain
Products GmbH, Gilching, Germany).
Amplitudes and latencies were analyzed at midline

electrodes (Fz, Cz, Pz) using repeated measures ANOVAs
with within-subject factors time (10, 12 am, 2, 4 pm),
region (frontal, central, parietal), modality (auditory, vis-
ual) and the between-subjects factor group (patients with
ALS, healthy participants), and we report Greenhouse-
Geisser—corrected p-values (after Mauchly’s Test). Effect
sizes are reported as eta-square (η2, [44]), and Cohen’s d
[45]. Marginal means [46] with degrees of freedom based

on the underlying ANOVA model were used for follow-up
analysis and p-values of post hoc tests were Tukey cor-
rected for multiple comparisons. Inspection of amplitudes
(Tukey boxplots, k = 1.5, [47]) indicated extremely high
values for two participants in the patient sample, which
were therefore excluded from all amplitude and latency
analyses. Similarly, inspection of the distribution of laten-
cies indicated potentially outlying values for five patients
with ALS and five healthy participants. Since we deemed
it unfeasible to exclude such high a number of partici-
pants, the results of the repeated measures ANOVA on la-
tencies was replicated using a permutation based repeated
measures ANOVA-equivalent, which confirmed the re-
sults of the parametric ANOVA.
The correlation between ALSFRS-R and P300 mean

amplitude/latency was based on the respective averaged
Fisher Z-transformed Spearman correlation coefficients
and evaluated using a t-test. EEG curves in Fig. 1 were
10 Hz butterworth low-pass filtered for visual presenta-
tion. Statistical analyses were performed in R [48] using
the ez [49], lsmeans [50], lmPerm [51], and signal pack-
ages [52].

Results
P300 amplitude
Analysis of P300 amplitudes indicated significant main
effects of modality (F(1,24) = 7.23, p = .013, η2 = .07) and
region (F(2,48) = 17.62, p < .001, η2 = .06 see Fig. 2), and
a marginally significant interaction of group, time, mo-
dality, and region (F(6144) = 2.17, p = .049, η2 = .001).
Follow-up analysis indicated that amplitudes in the
auditory modality were on average smaller than in the
visual modality (t = −2.69, DF = 24, p = .013, d = −.22),
and amplitudes at Fz were smaller than at Cz (t = −4.90,
DF = 48, p < .001, d = −0.48) and Pz (t = −5.35, DF = 48,
p < .001, d = −0.53), but comparable between Cz and
Pz (t = −0.45, DF = 48, p = .894, d = −0.04). Follow-up
analysis (per modality and region) on the interaction
of group, time, modality, and region did not reveal
significant differences in amplitudes between time of
day and group (all p > .20).

P300 latency
Analysis of P300 latencies revealed a significant main
effect of modality (F(1,24) = 119.13, p < .001, η2 = 0.38),
an interaction of modality and region (F(2,48) = 6.07,
p = .011, η2 = 0.02, see Fig. 3), but no effects of group,
time, or any of their interactions. Follow-up analysis indi-
cated that latencies in the auditory modality were always
shorter than in the visual modality at all electrodes (all p
< .001), but the latency difference between the two modal-
ities was larger at Fz than at Pz (t = 3.48, DF = 48, p = .003,
d = 0.68) with no significant differences between either Fz
and Cz and Cz and Pz (all p > .156).
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Relation to physical impairment (ALSFRS-R)
To test for potential interrelations between severity of ALS
(ALSFRS-R score) and P300 amplitude/latency, we calcu-
lated correlational analyses in the patient sample. Disease
severity did not correlate with P300 peak amplitude (r = .21,
t = 0.68, DF = 10, p = .745) or latency (r= −0.09, t = −0.29,
DF = 10, p = .389).

Discussion
The present study was conducted to investigate
whether time of the day and modality (visual vs. audi-
tory) should be considered as factors influencing P300

amplitude and latency when conducting BCI sessions
in patients with ALS.
Our hypotheses predicted a general decline of P300 am-

plitudes and increased latencies throughout the day, and
that this proposed effect would be even more pronounced
in patients with ALS. Our analyses neither revealed signifi-
cant differences in ERP amplitudes/latencies between pa-
tients with ALS and healthy participants, nor changes with
time of day. Instead, we only found that in the auditory do-
main, amplitudes were smaller and latencies shorter than in
the visual domain. P300 amplitudes in both modalities were
more positive at Cz and Pz than at Fz.

Fig. 2 P300 amplitude across modalities and regions. Error bars represent
95% confidence intervals Fig. 3 P300 latencies. Error bars represent 95% confidence intervals

Fig. 1 P300 difference curves (deviant-frequent), for patients with ALS and healthy participants
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These results indicate that in patients with ALS P300
amplitudes comparable to those of healthy participants
can be elicited in both modalities, which supports the
feasibility of a P300 BCI also in late stage ALS. Although
some previous studies obtained similar results [28, 30],
this result it still surprising because the majority of stud-
ies reports diminished amplitudes and an impaired cap-
acity of sustained attention and working memory in
patients with ALS [25–27, 29]. One possible reason for
these comparable amplitudes between ALS patients and
healthy participants might be the home environment in
which measurements were undertaken. It might be pos-
sible that a familiar environment enables the patients to
better concentrate on the stimuli and tasks as compared
to a laboratory setting.
In a previous study, Wesensten and colleagues [34]

found decreases in auditory P300 over the course of the
day. However, these findings were challenged by Geisler
and Polich [35] who concluded from their study, that
auditory P300 amplitudes did not depend on the mere
time of day, but on pulse-rate, or body temperature and
food intake, both often correlating with time of the day.
Food intake, heart rate, or body temperature were not
assessed in our study, so no quantification of the effect
of these factors can be presented. However, judging from
the absence of an effect of time of day, it would appear
that their combined effect would be too small to warrant
differential scheduling of BCI by time of day. In sum,
P300s seem to be elicited irrespective of the time of the
day when presented to participants in their home
environment.
Although auditory stimulation led to overall smaller

P300 amplitudes, amplitudes in ALS patients were still
comparable to those of healthy controls. Previous studies
have already stressed the need to establish auditory BCIs
in ALS patients [53, 54], as in late stages of ALS,
patients may also loose reliable control over eye move-
ments. As a consequence, in ALS patients as well as in
other behaviorally non-responsive patients, the auditory
channel is usually better preserved [55] or might even be
the only remaining channel to establish communica-
tion [56]. Application of auditory BCIs of different
kinds have shown promising results in healthy partici-
pants [9, 15, 57–59] and auditory P300 BCIs based
on the tone segregation phenomenon [60] or animal
sounds were also brought to patients [59].

Limitations
Data collection took place at the participants’ homes,
and analyses were deliberately restricted to midline posi-
tions. This was done bearing in mind real-world applica-
tion scenarios for BCIs, especially with regard to
patient’s desire for limiting the number of electrodes as
much as possible [61]. While similar restricted setups

have been shown to be sufficient for achieving BCI con-
trol in patients with ALS [62], our results are still only
tentative given that classification performance was not
evaluated. In addition, we highlight that while time of
day is certainly a convenient indicator of patients’
fatigue, other, more direct measures could have been
used. For example, analyses involving “hours awake”,
self-reported tiredness, or even physiological indicators
of circadian variation [34] as covariates might yield dif-
ferent results, and, hence, such measures might be in-
cluded in future research. Finally, the low number of
patients might limit generalization of results.

Conclusion
Taken together, the data presented in this study suggest
that P300-based BCIs could be applicable in patients
with ALS throughout normal waking hours (10 am–4 pm).
Patients presented with P300 amplitudes and latencies
comparable to those of healthy participants in both, the
auditory and the visual domain. Furthermore, there was no
correlation between the constraints in physical functioning
measured by the ALSFRS-R and P300 physiology. This
means that reliable P300 potentials can be elicited also in
late stages of the disease, thus preserving the basic require-
ments for BCI use. This is also supported by single-case
studies which evaluated the usability of BCIs during long-
term independent home use [63, 64].
In sum, the present results show the feasibility of P300

ERP recordings in patients with ALS throughout the
day, and, hence, the P300’s potential usefulness as a BCI
input signal in long term independent home use
scenarios.

Abbreviation
ALS: Amyotrophic lateral sclerosis; ALSFRS-R: Revised Amyotrophic Lateral
Sclerosis Functional Rating Scale; BCI: Brain computer interface;
EEG: Electroencephalography; ERP: Event related potential; SOA: Stimulus
onset asynchrony
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