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Highlights: 
 Panels containing PCM, Wood-shaving and PCM/wood-shavings amalgams are created. 

 Panels are subjected to heat profiles and their thermal performances were compared. 

 Heat peak reduction, heat peak shift and fluctuation of temperatures are examined. 

 Amalgamation of wood-shavings did not improve the PCM’s thermal performance. 

 The overall weight of the panels was reduced due to amalgamating wood-shavings. 
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Abstract 

The reduction of gained heat, heat peak shifting and the mitigation of air temperature 

fluctuations are some desirable properties that are sought after in any thermal insulation 

system. It cannot be overstated that these factors, in addition to others, govern the 

performance of such systems thus their effect on indoor ambient conditions. The effect of 

such systems extends also to Heating, Ventilation and Air-conditioning (HVAC) systems that 

are set up to operate optimally in certain conditions. Where literature shows that PCMs and 

natural materials such as wood-shavings can provide efficient passive insulation for 

buildings, it is evident that such approaches utilise methods that are of a degree of intricacy 

which requires specialist knowledge and complex techniques, such as micro-encapsulation 

for instance. With technical and economic aspects in mind, an amalgam of PCM and wood-

shavings has been created for the purpose of being utilised as a feasible thermal insulation. 

The amalgamation was performed in the simplest of methods, through submerging the wood 

shavings in PCM. An experimental procedure was devised to test the thermal performance of 

the amalgam and compare this to the performance of the same un-amalgamated materials. 

Comparative analysis revealed that no significant thermal gains would be expected from such 

amalgamation. However, significant reduction in the total weight of the insulation system 

would be achieved that, in this case, shown to be up to 20.94%. Thus, further reducing 

possible strains on structural elements due to the application of insulation on buildings. This 

can be especially beneficial in vernacular architectural approaches where considerably large 

amounts and thicknesses of insulations are used. In addition, cost reduction could be attained 

as wood shavings are significantly cheaper compared to the cost of PCMs. 

 

Keywords: PCMs; Heat peak; Heat peak shift; Thermal performance; Wood shavings; 

By-products. 

 

 

 

 

 

 

 

 

 

                  



1. Introduction 

To achieve higher comfort levels of occupants, traditional architecture incorporated 

varied aspects such as natural ventilation, shading, thermal mass and passive cooling 

techniques as some of the most important passive design features of traditional architecture 

[1,2]. In hot-arid climate regions, 70-80% of total energy consumption is used to operate 

active cooling systems [3], and consequently, reducing the reliance on those will have a 

drastic impact on energy consumption. An optimized envelope design can improve the 

thermal performance through passive solar techniques [4–7]. Some of the other variables that 

influence indoor thermal comfort includes: thermos-physical properties of the building’s 

envelope material [8]; the roof optical properties, namely the albedo, thermal emissivity and 

building insulation [5,9–11] that play an important role in the energy balance of buildings. 

Indoor air temperature is one of the important factors that contributes to achieving thermal 

comfort of occupants inside buildings [12,13] [14–16]. It is evident that the outdoor heat 

loads that a building is exposed to may affect the indoor air temperatures as heat is conducted 

through the building’s envelope. Many passive attempts to limit the effect of exterior heat on 

interior temperatures have been, to a good extent, successful [17–20]. This results in a 

lowered indoor temperature which increases thermal comfort in hot climates and reduces 

strain on HVAC systems caused due to heat overload on these devices [13,21–24].  

In last couple of years, PCMs have been extensively researched as a possible part of 

passive thermal control methods. Many researchers have attempted to utilize them in 

different ways [25–31], which have shown good potential. The innovative manner in which 

PCMs have been utilised has been miscellaneous. Methods such as using a layer of paraffin 

wax on brick walls and inside building envelopes  which has shown to be successful in 

reducing indoor air temperatures and related cooling electricity consumption of up to 75% 

[32–41]. Other studies have attempted utilise "PCM immersion" of building elements such as 

PCMs infused wallboards [42–45,39], PCM-mortar [46–51], PCM infused bricks [52–54], 

PCM-concrete [55–66] and PCM-enhanced plaster [67–69]. Such methods have reported the 

ability to reduce indoor temperatures by up to 5 C. Similarly, the combination of PCMs and 

other materials such as Silica, Graphene and Gypsum has also been investigated with 

promising results as to the thermal performance [70–78]. Also, the incipient field of Nano-

technology has allowed for much progress in this regard by adding certain types Nano-

particles to enhance PCM mixtures [31,79–83]. In terms of methods of utilising PCMs, 

encapsulation of PCMs seems to provide a good potential as a passive thermal control 

technique [84–92]. The encapsulated PCM is used also in various manners. Macro-

encapsulated PCMs can be used to fill void in brick walls  which show a possible reduction in 

temperature of up to 6.31C or 25% of peak temperatures [29,93–95]. Similarly, macro-

encapsulated PCMs can be placed in bags which also show a decrease in peak indoor 

temperatures, reported to be around 12.04 to17.26% [96–98].  

Traditional methods have also shown good thermal performance, in many cases 

comparable to modern passive thermal control methods [99–102]. Such methods involve 

using copious natural materials such as stone, mud, fabrics, plant segments and wood, utilised 

in various ways [101]. With the abundance of suitable natural materials, wood shavings have 

been the focus of investigation as it has shown good thermal behaviour. In addition, wood 

shavings are commonly found as a by-product in wood workshops and through industrial 

process. In many cases, it is disposed of with no significant use [103], which consequently 

results in it being of low cost, thus, further expanding the feasibility of usage. Furthermore, 

wood shavings are low in density compared to materials such as PCMs, resulting in lower 

weights. Also, utilization of wood-waste in particular is seen to be of desirable environmental 

impacts [102,104], which includes many forms such as cork, wood fibre and hemp. It is 

further explained that the advantageous thermal properties are a result of certain 

                  



characteristics such as lower embodied energy, moisture buffering capacity compared to 

other inorganic materials [104]. In addition to its low thermal conductivity that ranges from 

0.048 to 0.055 W/mK, which is comparable to other commercial insulation materials 

[102,104–106]. Furthermore, waste wood can be formed into panel-like shape that can act as 

effective thermal insulation with a density of around 315 kg/m3 and a thermal conductivity of 

around 0.08 W/m/K [106,107]. It is worthy to note that many segments of various types of 

plants are considered to be composed of wood-fibres, especially plants stalks and stems. 

Under certain conditions, these segments can be utilized to act as actual wood-fibres, which 

that have been found to provide good thermal behaviour, be cost-effective and have less 

environmental impact [15,99,103,107–112][103,111,112]. Such plant segments can include 

cotton-stalk [113–117], date palm branches [118], tomato-stalks [119], sun flower [120],  

corn cob [121],  straw-bale [122–125], bamboo [41]and poppy husk [126]. Such materials 

have been utilised in various ways, which has shown thermal conductivities ranging between 

0.051 and 0.053 W/(m K) [122] and as low as 0.040 W/mK [125,127,128] in some cases, 

with heat dampening of 93.6% and a heat time lag of 9.12 h [123].Combined wood particles 

of different sizes, in to boards, are also a viable approach that has shown efficient 

performance with thermal conductivities of between 0.1078 W/mK and 0.0742 W/mK 

[129,130]. It is evident from the previously discussed literature that using wood-related 

materials as a form of natural insulation is advantageous, with thermal performances similar 

to this of commercial synthetic materials, in addition to having better environmental impacts.  

The mentioned earlier refers to successful attempts to utilise both wood-base materials 

and PCMs. However, most of these attempts were made through mechanisms that require 

substantial technical effort such as impregnation of PCMs into the micro-structure of fibrous 

materials, including wood, through the use of vacuum pressure [131–133]. In the present 

study, wood shavings were amalgamated with PCMs through submerging. This particular 

method was utilised as it requires little intricacies thus eliminating cost, effort and technical 

issues. Hence, the novelty of the present study lays in the experimental investigation of the 

effectiveness of a simplified amalgamation approach as an alternative to common complex 

PCM utilisation methods that require intricate technologies to conduct, such as these 

mentioned earlier. Furthermore, the experimental approach carried out in this case differs 

from similar studies in terms of the purpose of using wood-shaving. Where most studies 

perceive such material as an encapsulation medium for the PCM particles as a macro 

encapsulation [134–138], the present study uses wood-shavings as supplement to PCM, with 

the goal to enhance its thermal performance as thermal insulation. The aim of the mentioned 

earlier is to explore possible advantageous gains the may be achieved from such simple 

method, weather gain of a thermal nature or otherwise. To achieve this, the amalgamated 

mixture is investigated for many features. Aspects such as heat peak reduction is important 

and heat peak shift are investigated as they describe the potential of a thermal insulator to 

impede conduction of heat through facades and the influence of the latent heat storage of 

such materials [40,41,54,66,97,139–142]. Also, the ability to reduce fluctuations in indoor air 

temperature has been investigated in this article. This is of significance as outdoor air 

temperature may fluctuate un-uniformly [20,143,144] causing analogous fluctuations in 

indoor air temperatures [145,146], which can cause thermal discomfort to inhabitants and 

affect the performance of HVAC systems exposed to this.  

 

2. Thermal performance of PCM panels 

As determined, the tested panel is placed between two controlled environments. To 

apply the required heat variations on one of the sides of the panel, a climatic chamber was 

used. To control the initial temperature of the other side, a confinement holding the panel was 

                  



created. As the temperature would vary on the side of the panel that is exposed to the 

chamber, the other side would gradually be thermally influenced by this variation. Through 

measuring the air temperature on both sides and comparing them, the effect of the PCM/ 

PCM-wood shavings could be assessed. The same process was repeated for the control panel 

(panel with 1 sheet of Plexi-glass) and the 1 cm air gap panel (panel with 2 sheets of Plexi-

glass). Figure 1 shows a schematic representation describing the position of the tested panel 

in relation to the controlled environments applied.  

 

 

 

Figure 1: Schematic representation of the experimental procedures 

carried out on the tested panels (Authors’ own). 
 

 

 To choose an appropriate type of PCM for this study several factors were considered. 

It was considered that the chosen type of PCM is applicable in building applications, thus, 

having a melting/freezing temperature that is within range of the prevailing temperatures 

found in some hot climates. It is important to note that literature has pointed out that 

applications relying on PCMs can fail due to inappropriate melting/solidification 

temperatures [147]. In addition to being durable and having congruent melting to ensure that 

it retains original structure throughout numerous cycles of phase change [148,149]. In 

addition, aspects such as 1) chemical stability; 2) complete reversible freeze/melt cycle; 3) 

limited degradation; 4) non-toxicity, 5) non-flammability and 6) non-explosiveness and non-

corrosiveness where taken in to account [150]. Paraffin waxes are able to provide most of the 

required criteria described earlier [151]. The PCM initially chosen to be used is Paraffin wax 

43/46 obtained from a UK based chemical company (Scientific laboratory supplies SLS) 

product No. CHE2750, shown in Figure 2 (A&B). Table 1 shows some of physical and 

chemical properties of the PCM as provided by the supplier.  

 

 

 

Table 1: physical and chemical properties of the 

paraffin wax as provided by the supplier.  
 

Appearance  White waxy solid 

Odour  Nectareous. 

pH  Not applicable 

Boiling Point  350°C 

Melting Point  43°C 

Flash Point  300°C (Closed cup) 

Upper Flammable Limit  Not applicable 

Lower Flammable Limit  Not applicable 

Auto Ignition  Not applicable 

Explosive Properties  No. 

Oxidising Properties  No. 

Vapour Pressure  Not applicable 

Relative Density  0.9550 

Water Solubility Insoluble in water. 

(A) 

 
(B) 

Figure 2: (A) Packaging of Paraffin wax 

as provided by supplier. (B) Appearance 

of paraffin wax in the solid phase. 

                  



 Experimental rig 2.1.

To conduct the experimental condition described earlier, a rig consisting of several 

elements was designed. An appropriate container was required to encapsulate the tested 

material without affecting test results. Factors such as leakage, chemical compatibility and 

expansion properties of the PCM were taken into account as literature shows that they may be 

of importance in PCM testing [148,152]. The container used for this experiment was created 

using sheets of MDF wood that were cut using an Epilog Fusion M2™ Laser cutter and 

engraver for precise cutting. The container is constructed of a frame of MDF wood with a 

thickness of 10 mm, with a width of18 mm. The inner dimensions were 20 * 24 cm so as to 

accommodate the PCM panel (20 * 20 cm) and provide a 20 percent of the PCM volume as 

void for expansion (4 cm). Four layers of water-sealing varnish coating are applied to ensure 

that no absorption of the PCM would occur when it is in the liquid phase. The top side of the 

frame was removable to allow for the materials to be inserted into the container. Both sides of 

the frame were covered with sheets of Plexi-glass of 2mm thickness using glue. The 

container after assembly is shown in Figure 3 (A). For comparison purposes, two more panels 

were created. One of them, a panel that consisted of a single 2 mm layer of Plexi-glass and a 

wooden frame with the same dimensions as the PCM encapsulation panel, was used as a 

reference control panel. The other panel was identical to the previously mentioned, however, 

no materials were placed inside. The purpose of this panel is to test the thermal performance 

of the two layers of Plexi-glass with an intermediate air gap of 1 cm width.  

As mentioned earlier, a five-sided box-like confinement was constructed of isolating 

materials. The 6
th

 side remained as a void to accommodate the panel under investigation. This 

allowed the side of the panel that is facing the inner part of the confinement to be exposed 

(initially) to room temperature while the other side is exposed to the pre-set temperatures. 

Figure 3 (B) shows the confinement after final assembly, including fibre-wood insulation. 

The box-like confinement was made of 18 mm thick sheets of medium density fibre wood 

(MDF) that were cut and assembled with inner dimensions of 20cm*20cm*35cm. To hold 

the PCM encapsulation panel at the front of the confinement as required, a platform with the 

same inner dimensions as the panel was created from the same materials. Insulated was made 

by covering all sides with four layers of wood-fibre sheets (Diall™ Fibre wood underlay) 

with total thickness of 20mm, shown in Figure 3 (C). An Epilog Fusion M2™ Laser cutter 

and engraver, shown in Figure 3 (D), was used to ensure accuracy of the cut parts. To subject 

the PCM panel that are under investigation to environment-like conditions, the panels and the 

insulated confinement were placed inside an environmental chamber during the testing 

process. The environmental chamber used was a Panasonic™ versatile environmental test 

chamber model MLR-352 as shown in Figure 3 (E&F). The chamber has the ability to be 

programmed to manipulate the temperature of the inner environment to change from 0°C to 

60°C. To monitor the change in air temperature of both side of the encapsulation panel 

throughout the duration of the experiment in which heat was applied, two HOBO
®

 MX 

Temp/RH Data Loggers model-(MX1101) shown in Figure 3 (G) below are used. The data 

loggers had built in thermal sensors with a range of -20° to 70°C with an accuracy of ±0.21°C 

in addition to humidity sensors. The loggers are capable of logging up to one reading per 

second. Control and setup of the data loggers can be done through an iOS or Android™ 

device through a Bluetooth
®

 connection. Logged data is also downloaded through the 

wireless connection mentioned earlier through HOBO mobile
®

 app. 

 Experimental procedures 2.2.

The following depicts details regarding the creation of the three panels in addition to a 

control panel and an empty panel created for further comparison purposes. A description of 

the heat profiles applied to the panels with various details is also provided. 

                  



 

    

(A) (B) (C)   (D)   

    

(E)   (F)   (G)   (H) 

Figure 3: (A) Material container after assembly. (B) The Box-like confinement, with the 

platform end. (C) Diall™ Fibre wood underlay sheets. (D) Epilog Fusion M2™ Laser cutter and 

engraver. (E) Exterior of environmental chamber. (F) Interior of chamber, (G) HOBO
®
 MX 

Temp/RH Data Logger model-(MX1101). (H) Encapsulation panel secured upright using a 

holder, PCM had been poured in and left to cool, photographed after 10 minutes approximately. 
 

2.2.1. PCM panel testing 

To create a PCM panel, 382 grams of the PCM were weighed (the PCM had a density 

of 0.9550, and the required panel was with dimensions of 20*20*1 cm). This was the amount 

required to create a panel with the desired dimensions. The PCM was then placed in a steel 

container then liquefied using an electric hotplate to temperature of 65°C approximately. The 

liquefied PCM was poured in the encapsulation panel. The encapsulation panel was held 

upright using a holder shown in in Figure 3 (H) above as the liquefied PCM was poured-in 

till 200 mm were filled in order to leave 40 mm for expansion as mentioned earlier. The PCM 

was poured slowly so that to ensure that no air pockets (air-bubbles) had been formed. The 

panel was left over-night in a relatively cool environment so as to allow for the PCM to 

solidify. Both the encapsulation and the confinement were then placed inside the 

environmental chamber, which was then sealed. A series of tests were performed on the 

panel. In each test, a different heat profile was used. The aim of this is to monitor the 

performance of the tested materials under different modes of heat loads. It is important to 

note that two of the heat profiles are used to simulate natural day/night cycles were as the rest 

was used to simulate different fluctuation in temperatures that may occur in certain 

environmental conditions. Table 2 depicts the temperatures and durations that the chamber 

was pre-set to. A difference is identified between the pre-set and actual measured 

temperatures, due to capabilities. Measurements were set to be logged every 10 seconds.  

In heat profile 1, a gradually increasing/decreasing profile was used. The profile was an 

attempt to simulate the natural gradual increase of temperature that would occur in a hot 

environment during day time and the decrease of temperature during night. The heat profile 

ranged from 15°C to 57°C in a duration of 24 hours. Figure 4 (A) shows the temperature 

inside the chamber during test. In order to achieve a gradually changing temperatures as 

required, twelve steps of temperatures had to be set. Each step was for the duration of 1 hour 

and increased in temperature by 7°C. Likewise, Profiles 2-6 were conducted with varying 

cycles of heat and different durations. Figure 4 (B, C, D, E & F) show the change in 

temperature according to the setting of each profile. 

                  



Table 2: Pre-set heat profiles 

Heat 

profile 

Minimum 

temp. 

°C 

Maximum 

temp. 

°C 

Cycles 

Cycle 

duration 

(hours) 

Total 

duration 

(hours) 

1 15 57 1 24 24 

2 15 55 1 12 12 

3 35 55 2 6 12 

4 35 55 3 4 8 

5 35 55 3 2 6 

6 35 55 3 1 3 

 
 

  

(A) (B) 

  

(C) (D) 

  

(E) (F) 

Figure 4: Pre-set and actual temperature inside the environmental chamber for: (A) Heat profile 1, (B) Heat profile 2, (C) 

Heat profile 3, (D) Heat profile 4, (E) Heat profile 5, (f) Heat profile 6. 
 

2.2.2. Wood shavings filled panel (Ws): 

Wood shavings obtained from a local provider were used. The utilized wood shavings 

were chipping of plywood obtained as a by-product of wood manufacturing processes. The 

approximate calculated bulk density of the shaving in their loose form was 0.1 g/cm
3
. An 

amount of 40g of wood shavings was placed inside the panel (with dimensions of 20*20*1 

cm). This mount was sufficient for the panel to be filled with wood shavings without any 

form of compression. Figure 5(A) shows the panel filled with the amount of wood shavings. 

 

                  



2.2.3. PCM/Wood-shavings (PCM/Ws) panel testing  

Wood-shavings were obtained from a local provider. To create the mixture of wood-

shavings and Paraffin wax, 40g of wood-shavings were weighed on a scale (as 14% of the 

total weight of the mixture). An amount of 260g of Paraffin wax (86% of the total weight of 

the mixture) was melted on a magnetic stirrer (set to 60°C) which was used to stir the wood-

shavings in the mixture. The wood-shavings were added gradually to the wax while being 

stirred. This is to ensure that all particles of the wood-shavings have been engulfed with the 

wax. Once the entire amount of wood-shavings was added to the wax, it was important to 

manually stir the mixture as it had created a paste-like substance which demanded manual 

stirring to ensure that the mixture is completely homogenous. It should be noted that the 

stirring was performed at a constant temperature of 60°C so that to ensure that the wax would 

remain in a liquefied form throughout the entire process. After being stirred, the mixture left 

to slightly cool (to around 43°C) to facilitate placing it into the panel for testing. Figure 5(B) 

shows the slightly cooled mixture. Initial trials have shown that it may be hard to place the 

mixture in the panel in a liquefied form as it is of high density which makes it difficult to 

manage placement in a relatively small opening such as this of the panel. Similar to previous 

tests performed on the PCM panel (described in section 2.2.1), the panel was filled with the 

created mixture, as shown in Figure 5(C). The panel was cooled to room temperature prior to 

any testing to ensure that no latent heat would affect testing, which was repeated prior to all 

tests. Then, the filled panel was placed in its analogues section in the testing confinement 

which is then placed inside the environmental chamber in the same manner as described 

earlier in the previously mentioned thermal tests.  

  

 

2.2.4. Control panel and air gap panel test 

As explained earlier, the same tests using the mentioned heat profiles were carried out 

on the control panel and the air gap panel for comparison purposes.  

 

2.2.5. Verification of measurements 

It should be noted that to verify the accuracy of the measurements obtained, several 

steps were taken. In addition to the measurements mentioned earlier, for profile 2 and profile 

6, the measurements were repeated once with the same data logger mentioned earlier and 

twice with another data logger of the same type. In total, the mentioned tests were carried out 

four times using two different loggers. These profiles were specifically selected for the 

verification process as they represent both a short and long-term duration cycle of heat. The 

results showed that all of the verification tests were in alignment and the deviations in 

   
(A) (B) (C) 

Figure 5: (A) Panel filled with 40g of wood shavings. (B) Mixture of 20% wood-shavings and 

80%paraffin wax cooled to a temperature of around 43°C. (C) Panel filled with mixture ready to be 

placed inside environmental chamber. 

                  



temperature readings were less than (0.05°C) thus suggesting the validity of measurements. 

In addition to this, all of the profiles were also repeated with an alternate logger (in total two 

repetitions for each profile). The results of this also showed an alignment with a deviation in 

measurements less than (0.03°C). Hence, it can be verified that measurements are accurate.  

 Results and Analysis  2.3.

Table 3 shows the results for all the tested panels under the influence of various heat 

profiles. In the mentioned table, a comparison is presented between results of the panel 

created with a single sheet of Plexi-glass which simulates a single-panel window referred to 

as the control panel in this study. Results for the panel consisting of two panels of plexiglass 

is referred to as the ―1 cm‖ air gap panel, the PCM filled panel is referred to as ―PCM panel‖ 

and the panel filled with the PCM/wood-shavings mixture is referred to as ―PCM/Ws panel‖. 

In Table 3, the column named "Chamber temperature ranges" presents the actual 

temperatures measured inside the chamber during each heat profile. Also, for each panel, the 

table presents the actual measured temperature ranges (maximum and minimum 

temperatures) that have occurred inside the confinement (shown in the column named 

―Temperature range‖). The maximum temperature inside the confinement compared to the 

actual maximum applied heat shows the potential in reduction of heat gain in the event of 

using a certain panel (referred to in the table as ―Peak temperature reduction‖). The reduction 

in peak temperatures is calculated as (the Max temp. of chamber – Max. temp. inside the 

confinement). The table also shows the variation in temperature fluctuation which was 

calculated as a percentage based on the difference of temperatures measured inside and 

outside the confinement (―Max. temp. inside the confinement – Min temp. inside the 

confinement‖ / ―Max. temp in chamber - Min. Temp. in chamber‖ * 100 %), thus, showing 

the potential of using such panels to mitigate heat fluctuations. This also shows the influence 

of the duration of exposure to heat has on the ability to mitigate fluctuations. The results 

additionally show the shift in the peak temperature time due to the presence of each panel, 

which is a property that could be utilised in many applications such as heat storage devices. 

 
Table 3: Thermal measurement of panels under heat profiles. 

Heat 

profile 

No. 

Chamber 

temp. 

ranges 

(°C) 
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1 15 - 52.5 15 - 49.8 92.8 60.3 2.7 15 - 48.1 88.2 66.7 4.4 15 - 48.4 89.1 78.8 4.1 

2 35 - 53.8 35 - 53.04 96 9.83 0.76 35 - 52.5 93 19.7 1.3 35 - 52.9 95.2 23.3 0.9 

3 35 - 52.6 35 - 49.1 80.1 11.5 3.5 40.8 - 48.7 44.9 23.7 3.9 38.7 - 49 58.5 25.8 3.6 

4 35 - 52.3 35 - 46.6 67 9.6 5.7 37.2 - 46.5 53.6 15.7 5.8 40.1 - 46.6 37.6 30 5.7 

5 35 - 49.6 35 - 42.4 50.7 18.5 7.2 35 - 42.7 52.7 30.7 6.9 35 - 42.2 49.3 39 7.4 

6 35 - 46 35 - 39.9 44.5 7 6.1 35 - 39.9 44.5 18 6.1 35 - 39.8 43.6 44.8 6.2 

  PCM PCM/Ws     

1 15 - 52.5 15 - 46.9 85 74.8 5.6 15 - 46.7 84.5 72.2 5.8     

2 35 - 53.8 35 - 51.6 88 24.8 2.2 35 - 52.5 93 23.7 1.3     

3 35 - 52.6 38.7 - 46.9 46.6 27.1 5.7 39.7 - 48.8 51.7 28.3 3.8     

4 35 - 52.3 37.2 - 45.6 48.5 32.5 6.7 40 - 45.7 32.9 34 6.6     

5 35 - 49.6 35 - 42.0 47.9 36.1 7.6 38.8 - 42 21.9 41.1 7.6     

6 35 - 46 35 - 39.3 39 21.7 6.7 35 - 39.4 40 40.5 6.6     

                  



In heat profile 1, shown in Figure 6(A), there was a reduction in the peak air 

temperature and a shift in the peak temperature time for all panels. As expected, the control 

panel has shown the least influence on the temperatures as it only consists of a 2 mm Plexi-

glass panel. The ―1 cm‖ air gap panel showed more influence as it resulted in decreased 

temperatures in comparison with the control panel. This is due to the effect of the air gap 

which acts as thermal insulation to an extent [153–157]. The Ws panel has shown reduction 

in temperature close to this of the ―1 cm‖ air gap panel. The most thermal influence was 

observed in both the PCM and the PCM/Ws panel. A negligible difference in temperature 

reduction was present between both mentioned panels. As for temperature fluctuation, similar 

results can be observed in all panels. The PCM and the PCM/Ws panel have shown the least 

fluctuation percentage in comparison with the other panels. This is also true for the peak heat 

shift durations. It is noted also that heat profile 1 showed the largest heat peak time shift in 

comparison with other heat profiles. Although the increase of temperatures was almost 

identical in all panels, the pace at which temperatures dropped inside the confinement is not 

as identical. The control panel was the fastest to cool down. The ―1 cm‖ air gap panel was 

slower to cool. The PCM and the PCM/Ws however, were the last to cool. This is possibly 

due to the latent heat effect of the PCM [158–160]. 

In heat profile 2, shown in Figure 6(B), similar results as heat profile 1 can be seen. 

However, it is noted that the peak temperatures of panels were higher than those of heat 

profile 1. This is possibly due to the applied heat increasing rapidly to 54°C within 1.5 hours 

of the test then stabilizing for the rest of the duration of the test. This implies that the 

fluctuation of temperatures may be less reduced if the temperature change is slow as this 

would allow for the heat to be further conducted through the panels thus causing further 

increasing and decreasing in the temperature inside the confinement. Similar results are 

shown in the rest of the heat profiles in regards to the performance of the panels shown in 

Figure 6(C, D, E & F). It is evident that there is a strong correlation between the duration of 

the cycle and the performance of the panels. In cycles with longer durations such as in heat 

profile 3 and 4, the temperatures inside the confinement were found to be fluctuating 

relatively higher. Whereas in heat profiles with shorter cycles such as heat profile 5 and 6, the 

fluctuations were found to be lower. It is important to note that this is the case for all the 

tested panels although the PCM/Ws was seen to have the least fluctuation in all heat profiles 

regardless of the duration of the cycle. Figure 7(A) shows the relation between cycle duration 

and the percentage of fluctuation in the tested panels based on the logged measurements of 

this investigation. 

As for the heat peak time shift which represents the duration elapsed from the point that 

the maximum air temperature occurs inside the chamber and the point that the maximum air 

temperature is reached inside the confinement, it is evident that there is a minor correlation 

between the duration of heat application and shift in peak temperature, as seen in Figure 7(B). 

To elucidate, despite several inconsistencies, the shift seems to increase as the duration of 

exposure to heat is decreased. An exception to this is profile 1, in which, the largest shifts 

have been observed despite exerting the most duration of exposure to heat. This may be 

explained as a result of the highly gradual mode of increase and decrease of heat. The gradual 

increase in heat allows for the PCM to reach its melting point after a longer duration without 

being affected by the heat prior to this point. It is worthy to note that the Ws, PCM and 

PCM/Ws panels have shown the most shift duration, with the PCM and PCM/Ws performing 

most efficiently in this regard in most of the heat profiles. It is important to point out that the 

type of PCM will influence its latent heat capacity thus affecting its capability to shift the 

heat peak [161], other types of PCMs are able to cause an extended heat peak shift as 

observed in the work of Chung and Park [96], Piselli et al. [97] and Principi and Fioretti 

[162] discussed earlier. This is true also for the reduction in the peak temperature. All panels 

                  



have resulted in a reduction that ranged from an insignificant reduction (such as 0.76°C in the 

control panel) to very significant reductions (such as 7.6°C in the PCM panel). It is evident 

that both the PCM and PCM/WS panel have resulted in the most reduction in all heat profile 

due to the melting properties of the PCM as discussed earlier in literature. However, it can be 

seen also that the reduction is at its greatest the shorter the heat cycle is. This can be 

elucidated as due to the lack of sufficient duration that allows the tested panel to gain heat so 

as to raise its temperature. Hence, it can be inferred that heat profile 1 and profile 2 represent 

a more accurate assessment of the temperature reduction capabilities of the tested panels as 

they have longer cycle durations (24 hours and 12 hours). Whereas, heat profile 3,4,5 and 6 

may represent temperature reduction of these panel in conditions were rapid changes in 

temperature are occurring.  

 

  
(A) (B) 

  
(C) (D) 

 
 

(E) (F) 

Figure 6: Temperatures of all panels during testing. (A) Profile 1. (B) Profile 2.  (C) Profile 3.  (D) Profile 4.  (E)  

Profile 5. (F) Profile 6. 

 

It can be seen that the thermal performance of the PCM and the PCM/Ws amalgam are 

similar to a large extent. For further comparison, the area encompassed under the curves of 

the mentioned earlier panels, represented earlier, are compared. Such areas can be indicative 

of the energy exerted inside the confinement during testing the mentioned panels. 

Trapezoidal approximation is used to calculate the mentioned areas. Figure 7(C) shows a 

comparison between the mentioned panels for all heat profiles. It can be seen that the 

performance of the panels in terms of energy is similar to a large extent. It may be worthy to 

note that the area under profile 1 curves are clearly much larger, which is consistent with the 

duration of applied heat for that profile. The areas for Profiles 5 and 6, however, are seen to 

particularly small a result of the applied heat fluctuating. This is to imply that the effect of 

heat fluctuation on the applied heat is similar to the effect of reducing the maximum applied 

temperature in terms of exerted energy. Most importantly, it can be observed from the 

measurements discussed earlier that although both PCMs and wood shavings have significant 

thermal performance, the amalgamation of both materials has not resulted in a significant 

                  



thermal enhancement in the thermal performance of the panels. The measured data shows 

that the performance of the PCM panel and the PCM/Ws panel is almost identical. Thus, it 

can be inferred that adding wood shavings to PCMs would not result in enhancing the 

thermal performance.  The values of thermal conductivities of PCM and wood-shaving can 

explain this fact. Studies show that the thermal conductivity of paraffin waxes, as PCM, of 

similar melting points to this used in the present study to be around 0.20 to 0.22 W/(m·K) 

[163–170]. Whereas, the thermal conductivity of MDF/plywood wood-shavings can be as 

low as 0.11 to 0.17 W/(m·K) [171–177] and in some cases as low as 0.03 W/(m·K) 

[178,179]. The inherent low thermal conductivity of wood-shavings, compared to this of 

PCM, can explain the fact that replacing an amount of PCM with a similar volume of wood-

shavings will not negatively impact the overall thermal insulation performance. Meaning that, 

within the amalgam panels, a portion of the denser PCM content is replaced with a material 

of a lower thermal conductivity, wood-shavings, which increases its overall insulation 

capabilities and reduces weight due to its relative light weight. 

  
(A) (B) 

 
(C) 

Figure 7: (A) Relation between observed temperature fluctuations in all panels and duration of heat profile 

cycles. (B) Relation between shift in peak temperatures in all panels and duration of heat profile cycles. (C) 

Comparison of area under curves for panels. 

 

From a constructional perspective, the amalgamation of these two materials can be of 

good use. As thermal insulation is applied to the exterior of buildings, this presents a 

structural load that is taken into consideration during the construction process. Heavier loads 

would result in more strain on structural elements which require further structural support 

thus increasing cost. However, having a density of 0.1 g/cm
3
, the addition of wood shavings 

to PCM would result in a significantly lower weight with the same, if not improved, thermal 

performance. For example, the PCM panel mentioned earlier was filled with 380 g of PCMs 

(with the density of 9.95 g/cm
3
). The thermal performance of the mentioned panel was 

matched and improved in some cases with the usage of the PCM/Ws which contained 260g 
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of PCMs and 40g of wood shavings with a total weight of 300g. This constitutes for a weight 

reduction of 80g (20.94 % of total weight). It is important to note that such reduction in 

weight can be of significant influence in certain area in the world where traditional 

architecture prevails. In such buildings, considerably thick insulation may be applied to 

counter extreme wheather conditions, such as rural egyptian architecture built in hot-arid 

desert climates for instance [180], where insulations can reach a thickness of over 50cm. In 

fact, many countries around the world still utilise such vernacular building approachs to the 

present day, such as India [181,182], Yamen [183], Macedonia [184], Myanmar [185], Nepal 

[186], Spain [187], Romania [188] and Japan [189]. Such buildings carry a large potential to 

benefit from insulation solutions such as this presented in the present study, where a saving in 

weight can be highly advantageous.   

 

3. Conclusions 

The appraisal of literature presented in this work identified that the use of PCMs, wood 

shavings and other natural materials as an innovative approach for passive thermal control is 

highly promising at low cost. However, attempts to combine these materials to gain enhanced 

thermal performance, although promising, has been performed using complex techniques that 

may be unsuitable where high-tech is not widely available. Little or no attempts have been 

carried out to investigate possible gains through simple amalgamation of PCMs and wood 

shavings. In the context of this article, this was investigated with regards to not only thermal 

aspect but possible other gains. Comparison of the tested materials shows the following: 

 PCMs and PCMs submerged in wood shaving have shown to have better thermal 

performance compared to wood shavings (in the Ws panel). However, measurements 

have shown that both PCMs and PCMs/wood shavings have very similar thermal 

performance, with PCM/wood shavings demonstrating a slightly better performance. 

This implies that adding amounts of wood shavings to PCMs would not result in any 

significant enhancement in the thermal performance. 

 Although no or little thermal gain can be achieved from submerging wood shavings in 

PCM, from a construction perspective, advantageous gains may be achieved. Namely, 

a reduction in weight of 22.94% may be achieved when using mixture of PCMs and 

wood shavings rather than using PCMs, with almost identical thermal performance. 

This is also economically advantageous as wood shavings are typically of low cost as 

a by-product of industrial processes. Hence, replacing amounts of PCM, in PCM 

related applications, with wood-shavings will certainly reduce thermal insulation 

costs.  

 PCMs and wood shavings submerged in PCMs are able to mitigate heat gain 

significantly. In cases of long heat cycles, the peak temperature was reduced by up to 

5.8°C. In cycles that have shorter durations, the heat peak reduction was up to 7.6°C. 

It should be noted that this reduction was achieved using 1 cm thick panels. Similar 

panels with larger thicknesses can have significantly better reduction in temperatures. 

This highlights the advantageous attribute of weight reduction through using wood-

shavings.  

 The experimental study shows that PCMs and wood shavings submerged in PCMs 

have a good potential to reduce air temperature fluctuations. For example, the 

PCM/Ws panel has shown a notable reduction in air temperature fluctuations (by 

15.5% to 60%) compared to the thermal performance of the control panel (reduced 

fluctuations by 7.2% to 55.5%) and the 1 cm air gap panel (reduced fluctuations by 

11.8% to 55.5%). This is true for all of the tested heat profiles which have different 

                  



cycles of high/low temperatures with various cycle durations. The reduction in 

fluctuations is evidently affected by its duration and intensity. 

 A shift in the peak temperature can be achieved using thermal insulation systems, 

depending on the system's latent heat properties and the durations of the applied heat 

cycles. However, it is clear that adding wood shavings to PCM in an insulation 

system will not have a significant effect in the duration of the heat peak shift.  

The results of this investigation have shown that, in addition to PCMs having the 

capability to reduce heat conduction through building walls, they are able to play a good role 

in mitigating air temperature fluctuations and cause a shift in the heat peak which may in 

certain cases be beneficial. More importantly, the data has shown that adding wood shaving 

to PCMs on a thermal insulation system in a simple submerged manner would not negatively 

affect the performance of this system, and, would result in a reduction of weight and cost. 

This reduction is of high significance in terms of construction requirements and cost. Other 

materials have such qualities which is a good area for future research. It is evident that further 

studies are needed to comprehend possible gains of amalgamating PCMs with natural low-

cost substances to further improve thermal, technical and economic aspects of thermal 

insulation systems. 
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