15 research outputs found

    Development of slate fiber reinforced high density polyethylene composites for injection molding

    Full text link
    During the last decade the use of fiber reinforced composite materials has consolidated as an attracting alternative to traditional materials due to an excellent balance between mechanical properties and lightweight. One drawback related to the use of inorganic fibers such as those derived from siliceous materials is the relative low compatibility with conventional organic polymer matrices. Surface treatments with coupling agents and the use of copolymers allow increasing fiber-matrix interactions which has a positive effect on overall properties of composites. In this research work we report the use of slate fiber treated with different coupling agents as reinforcement for high density polyethylene from sugarcane. A silane (propyltrimethoxy silane; PTMS) and a graft copolymer (polyethylene-graft-maleic anhydride; PE-g-MA) were used to improve fiber-matrix interactions on HOPE-slate fiber. The effect of the different compatibilizing systems and slate fiber content were evaluated by scanning electron microscopy (SEM), dynamic thermomechanical analysis (DTMA) as well as mechanical properties (tensile, flexural and impact). The results show that the use of silane coupling agents leads to higher fiber-matrix interactions which has a positive effect on overall mechanical properties. Interesting results are obtained for composites containing 30 wt.% slate fiber previously treated with propyltrimethoxy silane (PTMS) with an increase in tensile and flexural strength of about 16% and 18% respectively. (C) 2014 Elsevier Ltd. All rights reserved.Authors thank "Ministerio de Economia y Competitividad" ref: MAT2011-28468-C02-02 and "Conselleria d'Educacio, Cultura i Esport" - Generalitat Valenciana ref: GV/2014/008 for financial support.Carbonell Verdú, A.; García García, D.; Jordá Vilaplana, A.; Samper Madrigal, MD.; Balart Gimeno, RA. (2015). Development of slate fiber reinforced high density polyethylene composites for injection molding. Composites Part B: Engineering. 69:460-466. https://doi.org/10.1016/j.compositesb.2014.10.026S4604666

    Investigation of the fracture behavior of woven fiber glass-reinforced low-density polyethylene composite

    No full text
    WOS:000283423400005The fracture behavior of woven fiber glass-reinforced low-density polyethylene thermoplastic composite having a middle tension specimen with inclined through-thickness cracks under static loading is studied in this article. Through the experiments, the topics crack growth, crack opening displacement (COD), stress intensity factors, and fracture toughness are studied. Crack growth amount and COD values are used as a damage parameter factor for crack geometry calculations. The consequent results of the experiments are inspected with J-integral method and stress intensity factor. Load-elongation and load-crack mouth opening displacement, the strain energy release rate-crack growth amount, stress intensity factor-crack growth amount graphics were drawn as the material properties under consideration
    corecore