401 research outputs found
Mode-resolved reciprocal space mapping of electron-phonon interaction in the Weyl semimetal candidate Td-WTe
The selective excitation of coherent phonons provides unique capabilities to
control fundamental properties of quantum materials on ultrafast time scales.
For instance, in the presence of strong electron-phonon coupling, the
electronic band structure can become substantially modulated. Recently, it was
predicted that by this means even topologically protected states of matter can
be manipulated and, ultimately, be destroyed: For the layered transition metal
dichalcogenide Td-WTe, pairs of Weyl points are expected to annihilate as
an interlayer shear mode drives the crystalline structure towards a
centrosymmetric phase. By monitoring the changes in the electronic structure of
Td-WTe with femtosecond resolution, we provide here direct experimental
evidence that the coherent excitation of the shear mode acts on the electronic
states near the Weyl points. Band structure data in comparison with our results
imply, furthermore, the periodic reduction in the spin splitting of bands near
the Fermi energy, a distinct electronic signature of the non-centrosymmetric Td
ground state of WTe. The comparison with higher-frequency coherent phonon
modes finally proves the shear mode-selectivity of the observed changes in the
electronic structure. Our real-time observations reveal direct experimental
insights into electronic processes that are of vital importance for a coherent
phonon-induced topological phase transition in Td-WTe.Comment: 28 pages, 17 figure
Customized television: Standards compliant advanced digital television
This correspondence describes a European Union supported collaborative project called CustomTV based on the premise that future TV sets will provide all sorts of multimedia information and interactivity, as well as manage all such services according to each userâs or group of userâs preferences/profiles. We have demonstrated the potential of recent standards (MPEG-4 and MPEG-7) to implement such a scenario by building
the following services: an advanced EPG, Weather Forecasting, and Stock Exchange/Flight Information
Ultralong Copper Phthalocyanine Nanowires with New Crystal Structure and Broad Optical Absorption
The development of molecular nanostructures plays a major role in emerging
organic electronic applications, as it leads to improved performance and is
compatible with our increasing need for miniaturisation. In particular,
nanowires have been obtained from solution or vapour phase and have displayed
high conductivity, or large interfacial areas in solar cells. In all cases
however, the crystal structure remains as in films or bulk, and the
exploitation of wires requires extensive post-growth manipulation as their
orientations are random. Here we report copper phthalocyanine (CuPc) nanowires
with diameters of 10-100 nm, high directionality and unprecedented aspect
ratios. We demonstrate that they adopt a new crystal phase, designated
eta-CuPc, where the molecules stack along the long axis. The resulting high
electronic overlap along the centimetre length stacks achieved in our wires
mediates antiferromagnetic couplings and broadens the optical absorption
spectrum. The ability to fabricate ultralong, flexible metal phthalocyanine
nanowires opens new possibilities for applications of these simple molecules
Bioanalytical method development and validation for determination of metoprolol tartarate and hydrochlorothiazide using HPTLC in human plasma
A simple, sensitive, rapid and economic chromatographic method has been developed for determination of metoprolol tartarate and hydrochlorothiazide in human plasma using paracetamol as an internal standard. The analytical technique used for method development was high-performance thin-layer chromatography. HPTLC Camag with precoated silica gel Plate 60F254 (20 cmĂ10 cm) at 250 ”m thicknesses (E. Merck, Darmstadt, Germany) was used as the stationary phase. The mobile phase used consisted of chloroform: methanol: ammonia (9:1:0.5v/v/v). Densitometric analysis was carried out at a wavelength of 239 nm. The rf values for hydrochlorothiazide, paracetamol and metoprolol tartarate were 0.13±0.04, 0.28±0.05, 0.48±0.04, respectively. Plasma samples were extracted by protein precipitation with methanol. Concentration ranges of 200, 400, 600, 800, 1000, 1200 ng/mL and 2000, 4000, 6000, 8000, 10000, 12000 ng/mL of hydrochlorothiazide and metoprolol tartarate, respectively, were used with plasma for the calibration curves. The percent recovery of metoprolol tartarate and hydrochlorothiazide was found to be 77.30 and 77.02 %, respectively. The stability of metoprolol tartarate and hydrochlorothiazide in plasma were confirmed during three freeze-thaw cycles (-20 ÂșC) on a bench for 24 hours and post-preparatively for 48 hours. The proposed method was validated statistically and proved suitable for determination of metoprolol tartarate and hydrochlorothiazide in human plasma
Enantiopure Dinaphtho[2,3-b:2,3-f]thieno[3,2-b]thiophenes: Reaching High Magnetoresistance Effect in OFETs
Chiral molecules are known to behave as spin filters due to the chiral induced spin selectivity (CISS) effect. Chirality can be implemented in molecular semiconductors in order to study the role of the CISS effect in charge transport and to find new materials for spintronic applications. In this study, the design and synthesis of a new class of enantiopure chiral organic semiconductors based on the well-known dinaphtho[2,3-b:2,3-f]thieno[3,2-b]thiophene (DNTT) core functionalized with chiral alkyl side chains is presented. When introduced in an organic field-effect transistor (OFET) with magnetic contacts, the two enantiomers, (R)-DNTT and (S)-DNTT, show an opposite behavior with respect to the relative direction of the magnetization of the contacts, oriented by an external magnetic field. Each enantiomer displays an unexpectedly high magnetoresistance over one preferred orientation of the spin current injected from the magnetic contacts. The result is the first reported OFET in which the current can be switched on and off upon inversion of the direction of the applied external magnetic field. This work contributes to the general understanding of the CISS effect and opens new avenues for the introduction of organic materials in spintronic devices
Time-Resolved and Tissue-Specific Systems Analysis of the Pathogenesis of Insulin Resistance
BACKGROUND: The sequence of events leading to the development of insulin resistance (IR) as well as the underlying pathophysiological mechanisms are incompletely understood. As reductionist approaches have been largely unsuccessful in providing an understanding of the pathogenesis of IR, there is a need for an integrative, time-resolved approach to elucidate the development of the disease. METHODOLOGY/PRINCIPAL FINDINGS: Male ApoE3Leiden transgenic mice exhibiting a humanized lipid metabolism were fed a high-fat diet (HFD) for 0, 1, 6, 9, or 12 weeks. Development of IR was monitored in individual mice over time by performing glucose tolerance tests and measuring specific biomarkers in plasma, and hyperinsulinemic-euglycemic clamp analysis to assess IR in a tissue-specific manner. To elucidate the dynamics and tissue-specificity of metabolic and inflammatory processes key to IR development, a time-resolved systems analysis of gene expression and metabolite levels in liver, white adipose tissue (WAT), and muscle was performed. During HFD feeding, the mice became increasingly obese and showed a gradual increase in glucose intolerance. IR became first manifest in liver (week 6) and then in WAT (week 12), while skeletal muscle remained insulin-sensitive. Microarray analysis showed rapid upregulation of carbohydrate (only liver) and lipid metabolism genes (liver, WAT). Metabolomics revealed significant changes in the ratio of saturated to polyunsaturated fatty acids (liver, WAT, plasma) and in the concentrations of glucose, gluconeogenesis and Krebs cycle metabolites, and branched amino acids (liver). HFD evoked an early hepatic inflammatory response which then gradually declined to near baseline. By contrast, inflammation in WAT increased over time, reaching highest values in week 12. In skeletal muscle, carbohydrate metabolism, lipid metabolism, and inflammation was gradually suppressed with HFD. CONCLUSIONS/SIGNIFICANCE: HFD-induced IR is a time- and tissue-dependent process that starts in liver and proceeds in WAT. IR development is paralleled by tissue-specific gene expression changes, metabolic adjustments, changes in lipid composition, and inflammatory responses in liver and WAT involving p65-NFkB and SOCS3. The alterations in skeletal muscle are largely opposite to those in liver and WAT
Time-resolved single-particle x-ray scattering reveals electron-density as coherent plasmonic-nanoparticle-oscillation source
Dynamics of optically-excited plasmonic nanoparticles are presently
understood as a series of sequential scattering events, involving
thermalization processes after pulsed optical excitation. One important step is
the initiation of nanoparticle breathing oscillations. According to established
experiments and models, these are caused by the statistical heat transfer from
thermalized electrons to the lattice. An additional contribution by hot
electron pressure has to be included to account for phase mismatches that arise
from the lack of experimental data on the breathing onset. We used optical
transient-absorption spectroscopy and time-resolved single-particle
x-ray-diffractive imaging to access the excited electron system and lattice.
The time-resolved single-particle imaging data provided structural information
directly on the onset of the breathing oscillation and confirmed the need for
an additional excitation mechanism to thermal expansion, while the observed
phase-dependence of the combined structural and optical data contrasted
previous studies. Therefore, we developed a new model that reproduces all our
experimental observations without using fit parameters. We identified
optically-induced electron density gradients as the main driving source.Comment: 32 pages, 5 figures, 1 supporting information document include
Istodobno spektrofotometrijsko odreÄivanje losartan kalija, amlodipin besilata i hidroklorotiazida u farmaceutskim pripravcima kemometrijskom metodom
In the present work, four different spectrophotometric methods for simultaneous estimation of losartan potassium, amlodipine besilate and hydrochlorothiazide in raw materials and in formulations are described. Overlapped data was quantitatively resolved by using chemometric methods, classical least squares (CLS), multiple linear regression (MLR), principal component regression (PCR) and partial least squares (PLS). Calibrations were constructed using the absorption data matrix corresponding to the concentration data matrix, with measurements in the range of 230.5350.4 nm (âλ = 0.1 nm) in their zero order spectra. The linearity range was found to be 840, 15 and 315 ÎŒg ml1 for losartan potassium, amlodipine besilate and hydrochlorothiazide, respectively. The validity of the proposed methods was successfully assessed for analyses of drugs in the various prepared physical mixtures and in tablet formulations.U radu su opisane Äetiri spektrofotometrijske metode za istodobno odreÄivanje losartan kalija, amlodipin besilata i hidroklorotiazida u sirovinama i farmaceutskim pripravcima. Podaci koji su se preklapali kvantitativno su razluÄeni kemometrijskim metodama, klasiÄnom metodom najmanjih kvadrata (CLS), multiplom linearnom regresijom (MLR), regresijom glavnih komponenata (PCR) te metodom parcijalnih najmanjih kvadrata (PLS). Kalibracije su provedene koristeÄi podatke o ovisnosti apsorpcije o koncentracijama, mjereÄi spektre nultog reda u rasponu 230,5350,4 nm (âλ = 0,1 nm). Linearnost za losartan kalij bila je 840, za amlodipin besilat 15, a za hidroklorotiazid 315 ÎŒg ml1. Valjanost predloĆŸenih metoda uspjeĆĄno je potvrÄena analizom navedenih lijekova u razliÄitim pripremljenim smjesama i tabletama
Constructing a biodiversity terminological inventory.
The increasing growth of literature in biodiversity presents challenges to users who need to discover pertinent information in an efficient and timely manner. In response, text mining techniques offer solutions by facilitating the automated discovery of knowledge from large textual data. An important step in text mining is the recognition of concepts via their linguistic realisation, i.e., terms. However, a given concept may be referred to in text using various synonyms or term variants, making search systems likely to overlook documents mentioning less known variants, which are albeit relevant to a query term. Domain-specific terminological resources, which include term variants, synonyms and related terms, are thus important in supporting semantic search over large textual archives. This article describes the use of text mining methods for the automatic construction of a large-scale biodiversity term inventory. The inventory consists of names of species, amongst which naming variations are prevalent. We apply a number of distributional semantic techniques on all of the titles in the Biodiversity Heritage Library, to compute semantic similarity between species names and support the automated construction of the resource. With the construction of our biodiversity term inventory, we demonstrate that distributional semantic models are able to identify semantically similar names that are not yet recorded in existing taxonomies. Such methods can thus be used to update existing taxonomies semi-automatically by deriving semantically related taxonomic names from a text corpus and allowing expert curators to validate them. We also evaluate our inventory as a means to improve search by facilitating automatic query expansion. Specifically, we developed a visual search interface that suggests semantically related species names, which are available in our inventory but not always in other repositories, to incorporate into the search query. An assessment of the interface by domain experts reveals that our query expansion based on related names is useful for increasing the number of relevant documents retrieved. Its exploitation can benefit both users and developers of search engines and text mining applications
- âŠ