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Abstract

The increasing growth of literature in biodiversity presents challenges to users who need to

discover pertinent information in an efficient and timely manner. In response, text mining

techniques offer solutions by facilitating the automated discovery of knowledge from large

textual data. An important step in text mining is the recognition of concepts via their linguistic

realisation, i.e., terms. However, a given concept may be referred to in text using various

synonyms or term variants, making search systems likely to overlook documents mention-

ing less known variants, which are albeit relevant to a query term. Domain-specific termino-

logical resources, which include term variants, synonyms and related terms, are thus

important in supporting semantic search over large textual archives. This article describes

the use of text mining methods for the automatic construction of a large-scale biodiversity

term inventory. The inventory consists of names of species, amongst which naming varia-

tions are prevalent. We apply a number of distributional semantic techniques on all of the

titles in the Biodiversity Heritage Library, to compute semantic similarity between species

names and support the automated construction of the resource. With the construction of our

biodiversity term inventory, we demonstrate that distributional semantic models are able to

identify semantically similar names that are not yet recorded in existing taxonomies. Such

methods can thus be used to update existing taxonomies semi-automatically by deriving

semantically related taxonomic names from a text corpus and allowing expert curators to

validate them. We also evaluate our inventory as a means to improve search by facilitating

automatic query expansion. Specifically, we developed a visual search interface that sug-

gests semantically related species names, which are available in our inventory but not

always in other repositories, to incorporate into the search query. An assessment of the

interface by domain experts reveals that our query expansion based on related names is

useful for increasing the number of relevant documents retrieved. Its exploitation can benefit

both users and developers of search engines and text mining applications.
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Introduction

Background

Biodiversity, a synergy between biology and diversity, is concerned with the study of the vari-

ous levels of living entities on earth, from genes to ecosystems. It plays a central role in our

daily lives, given its implications on ecological resilience, food security, species and subspecies

endangerment and natural sustainability. To support the advancement of biodiversity

research, several efforts aimed at storing and sharing biodiversity knowledge have been under-

taken over the past few years, resulting in the creation of digital resources such as the Cata-

logue of Life, the Encyclopedia of Life, the Global Biodiversity Information Facility, and the

Global Names Architecture.

The Catalogue of Life (CoL) [1] aims to document all known organisms on earth and cur-

rently contains more than 1.6 million species names. Its database is continuously being

updated and peer reviewed for coherence and consistency by over 3,000 specialists. Similarly

aiming to collect information on various organisms, the Encyclopedia of Life (EoL) [2] stores

the names, descriptions and images of more than 1.3 million species, manually curated by

more than 85,000 members. For each species, EoL provides information in the form of pic-

tures, distribution maps, taxonomy tree, synonyms and common names in multiple languages.

Meanwhile, the Global Biodiversity Information Facility (GBIF) [3] is a repository that enables

institutions to publish their biodiversity data through common standards. The database cur-

rently consists of more than 640 million occurrence records pertaining to more than 1.6 mil-

lion species. The Global Names Architecture (GNA) [4] is a free and open-source web-based

infrastructure that aims to promote interoperability between a number of heterogenous biodi-

versity taxonomies. It is underpinned by the Global Names Index (GNI), a shared index of

approximately 20 million species names corresponding to around two million taxa. Owing to

the links between the different GNA-compatible taxonomies that GNI holds, additions or

changes to one taxonomy are automatically propagated to the others.

With the huge number of species records that these manually curated resources contain,

updating them is undoubtedly a time-consuming and laborious task. In addition, they cannot

always capture the richness of terminological variation—a phenomenon that is however evi-

dent in content expressed in natural language, i.e., textual data such as biodiversity literature.

An example of a resource holding vast amounts of text is the Biodiversity Heritage Library

(BHL) [5], an open-access repository containing millions of digitised pages of legacy literature

on biodiversity. Currently, BHL holds nearly 100,000 titles and over 170,000 volumes in many

languages, accounting for a huge amount of textual content with over 150 million species men-

tions. The English subset alone, for instance, amounts to more than 24 million pages of text.

A species is typically designated by two names: a scientific name (in Latin) and a common,

vernacular name. Scientific names typically follow Linnaeus’ binomial nomenclature [6, 7],

which makes use of (1) the generic name or genus, which always appears with its initial letter

in uppercase, and (2) the specific name or epithet. The species name Panthera leo, for example,

has Panthera as its genus and leo as its epithet. However, there are cases that require further

specification using names of a sub-genus, or a sub-species, which produces longer names.

When a sub-genus is included in a scientific name, it must appear—enclosed in brackets—

between the generic name and the epithet, and begin with an uppercase letter. For instance,

Cambarus (Puncticambarus) aldermanorum (a type of crayfish) belongs to the Cambarus
genus, under which taxonomists have created the subgenus Puncticambarus so that they can

track affinities within the group. In practice, the sub-genus can be omitted. Meanwhile, sub-

species names are written in lowercase and appended to the binomial name as in the examples

Strix nebulosa lapponica—a sub-species of Strix nebulosa (great gray owl), Panthera leo ssp.
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persica—a sub-species of Panthera leo (lion) and Areca insignis var. insignis—a type of palm

tree. A scientific name becomes more complex with the inclusion of its authority fields (i.e.,

the name of the first person to publish it and the year that it was coined), which can be written

in different formats. For example, biologists can use Panthera leo (Linnaeus, 1758), Panthera
leo Linnaeus, 1758 or Panthera leo Linnaeus 1758 to refer to the same species. Another chal-

lenge arises when biologists indicate genus or sub-genus by using only the initial character,

such as in C. (P.) aldermanorum and A. insignis. It should be noted that such abbreviations

lead to ambiguity since the initial character can represent a number of generic names. For

instance, A. insignis can have as its full form either Areca insignis (palm) or Ardea insignis
(white-bellied heron).

One of the most important tasks in the biodiversity informatics domain is the linking of a

species name to the other names of the taxon it stands for [8]. Thus, many name linking ser-

vices have been proposed, including GNA [4] and TaxaMatch [9]. GNA provides several

online services to parse and normalise scientific names containing orthographic variations,

mispellings or abbreviations. It has been integrated into BHL to facilitate indexing of optical

character-recognised (OCR) documents based on scientific names. TaxaMatch, meanwhile, is

a parser that is capable of decomposing a name into its semantic components, thus allowing

the matching of genus and epithet names. These services are, however, focussed on linking

only scientific names, and do not take into consideration vernacular ones. Without linking sci-

entific names to vernacular names and vice versa, search systems such as the BHL could suffer

from suboptimal recall [10]. For instance, with Panthera leo as a query term, the BHL search

engine returned only 14 relevant English articles, whereas its vernacular name “lion” retrieved

more than 100. Based on this example, more than 80% of articles can be potentially overlooked

by the system if it does not take into account variants of a user-specified query term.

In this paper, we describe our text mining-based approach to the automatic construction of

a biodiversity terminological inventory. Specifically, we demonstrate how distributional

semantic models (DSMs) were applied on a large-scale textual resource, i.e., the English subset

of BHL, in order to derive semantically related names. Semantic relatedness indicates how

much two terms are related by any kind of taxonomical or functional relation [11], which in

the context of this work could refer to scientific and vernacular species names denoting the

same taxon, or other species related by, e.g., the family or habitat they share. In the process, we

performed a comparative evaluation of various types of DSMs, which allowed us to select the

model that performs the best on the task of identifying semantically related species names. To

the best of our knowledge, this is the first study to comprehensively and comparatively investi-

gate the use of various DSMs for compiling a terminological inventory. Furthermore, our

work is the first attempt to automate the construction of such a resource for the biodiversity

domain.

In order to demonstrate the usefulness as well as the advantages of the resulting term inven-

tory compared to other biodiversity repositories, we developed a visual search interface that

employs the inventory to suggest semantically related species names based on a measure of

relatedness to the initial query. Although not within the scope of this paper, taxonomy cura-

tion could be another application of our inventory, in which existing taxonomies are populated

in a semi-automatic manner, i.e., with a user-in-the-loop manually validating automatically

suggested names.

Related work

A number of tools have been developed to facilitate the text-based analysis of taxonomic

names. On the one hand are tools for the fundamental task of recognising names within text,

Constructing a biodiversity terminological inventory

PLOS ONE | https://doi.org/10.1371/journal.pone.0175277 April 17, 2017 3 / 23

https://doi.org/10.1371/journal.pone.0175277


such as the dictionary-based TaxonFinder [12], Linnaneus [13] and OrganismTagger [14]; the

machine learning-based NetiNeti [15]; and hybrid systems such as TaxonGrab [16] and SPE-

CIES [17]. On the other hand are name-linking tools which are aimed at resolving taxonomic

names mentioned in text to their preferred names, accomplished at three various levels: (1)

orthographic or spelling, i.e, linking misspelt names to the correct ones; (2) nomenclature, i.e.,

taking into account scientific names with or without author, date and annotations; and (3)

semantic, i.e., taking into account both scientific names and vernacular names. Several tools

addressing the task at the first and the second levels are TaxaMatch [9], Taxonomic Name Res-

olution Service (TNRS) [18], gnaparser—a GNA service [4] and BiOnym [19]. TaxaMatch is a

pipelined-based approach for linking misspelt scientific names of species to the correct ones. It

employs a name parser to firstly decompose a scientific name into its semantic components

(i.e., genus, epithet and species authority). It then uses a hybrid string matching method to

compute a similarity score between the constituent components of a source and a target scien-

tific name. TNRS [18] is a web-based application that integrates a modified version of Taxa-

Match for linking scientific names of plants across different taxonomies. Experiments

demonstrated that TNRS substantially increased the overlap between two taxonomic resources

(i.e., the Integrated Taxonomic Information System and the National Center for Biotechnol-

ogy Information taxonomic database) when compared to exact string matching. Similarly to

Boyle et al. [18], Patterson et al. [8] used a variation of the TaxaMatch algorithm to link scien-

tific names of species across multiple taxonomies. The proposed algorithm was shown to better

address challenging cases for fuzzy string matching algorithms such as erroneous alignment of

homonym terms, i.e., terms that have different meanings but share the same spelling. BiOnym

[19] is another taxon name matching system that allows users to select their preferred list of

names to be incorporated into the system.

Considering that our proposed work is capable of detecting scientific and vernacular names

that are taxonomically (i.e., referring to the same taxon) or functionally related (i.e., sharing

the same family or habitat), it can be viewed as a method for linking names at the semantic

level, applied to the automatic construction of specialised terminological resources. Existing

approaches to this task can be coarsely classified into string-based, knowledge-based and

distributional semantic methods. String-based methods exploit surface features (e.g., character

n-grams, bi-grams, prefixes, suffixes etc.) to compute a similarity score between two terms.

Thompson et al. [20] used a fuzzy string matching method as part of a larger text mining pipe-

line to construct the BioLexicon, a large-scale lexicon of biomedical terms. Their proposed

pipeline consists of several components, including: a) automatic term extractors [21] and

named entity recognisers [22], which extract mentions of terms and named entities in text; b)

a fuzzy string matching method that identifies term variants of the same concept; and c) syn-

tactic and semantic parsers used to automatically acquire the grammatical and semantic

frames within which concepts appear. The BioLexicon, which indexes approximately 1.8 mil-

lion terminological variants with over 2 million synonymy relations, has been proven useful

for a number of applications (e.g., lemmatisation of biomedical text, information retrieval and

information extraction [23, 24]). Tsuruoka et al. [25] presented a string matching method to

capture synonyms between gene/protein names. They used logistic regression to learn a novel

string similarity measure based on a gene/protein name dictionary extracted from the Unified

Medical Language System (UMLS) [26]. Experimental results showed that their approach out-

performed string matching methods that are based on existing similarity measures such as

Jaro-Winkler [27] and SoftTFIDF [28].

While string matching methods can effectively identify synonyms that vary only at the

orthographic level, they perform poorly when a name shares no orthographic similarities with

its variants. Such cases are prevalent in the biodiversity domain where synonymous scientific
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and vernacular names typically have no common orthographic features (e.g., Strix nebulosa vs.

great grey owl).

Going beyond capturing orthographic similarities, knowledge-based methods [29–32]

leverage external knowledge resources, such as thesauri (e.g., UMLS [26]), ontologies (Gene

Ontology [33]) or semantic networks of concepts (e.g., WordNet [34]), to estimate semantic

similarity between two terms. In the biomedical domain, several approaches investigate the

use of knowledge-based methods to compile or update term inventories. Wang et al. [31] used

the Gene Ontology (GO) to compute the semantic similarity between biochemical or biologi-

cal terms while Lee et al. [32] exploited the SNOMED-CT thesaurus to identify semantically

similar clinical terms. A limitation of existing knowledge-based approaches is that their perfor-

mance depends upon the coverage of manually curated knowledge resources, which may not

be readily available for certain domains.

In contrast, distributional semantic models (DSMs) do not rely on hand-curated knowledge

resources. They compute semantic relatedness based on domain- and language-independent

models, which have demonstrated superior performance over knowledge-based approaches

for the estimation of semantic similarity [35, 36]. DSMs encode the lexical context of a term

into a vector representation and calculate term relatedness as the cosine similarity between

term vectors. The lexical context is determined using count-based distributional semantics,

i.e., by calculating the frequency of the words that occur within a term’s neighbourhood. Hen-

riksson et al. [37] used a count-based DSM to construct a terminological inventory of clinical

terms from a collection of electronic health records. Whilst count-based DSMs have been

shown to work well when applied to single-word terms, they obtain suboptimal performance

on multi-word terms, i.e., those comprised of multiple words. Previous studies have however

observed that multi-word terms account for more than 90% of the terms indexed by special-

ised terminologies [37]. Thus, methods that accurately identify synonymous pairs of multi-

word terms are crucial for the efficient construction of terminological resources. Examples of

such methods include compositional DSMs, which employ a function of a multi-word term’s

constituent words to encode it as a vector. Upon applying different DSMs on two medical his-

torical archives, Thompson et al. [38] demonstrated that a compositional DSM obtained

improved performance over standard count-based DSMs. The semantically related terms

identified by their compositional DSM formed the basis of a terminological inventory of medi-

cal concepts, which was then integrated into a semantic search interface to allow users to

explore the evolution of medical terms over time.

One disadvantage of count-based DSMs (compositional or not) is their underlying bag-of-

words (BOW) approach for capturing lexical context, i.e., the reliance on raw co-occurrence

frequencies between a term and its neighbouring words. Such representation of lexical context

does not take into account word order and semantic information, since all neighbouring

words are considered equally distant from a given term and are represented as an unordered

bag-of-words collection [39].

In this article, we explore the use of more sophisticated DSM methods, i.e., prediction-

based DSMs, to efficiently construct a terminological inventory of biodiversity terms. In con-

trast to count-based DSMs, prediction-based models exploit an embedded representation of

words or phrases, which take into account the semantics and the order of the words. Baroni

et al. [39] claimed that prediction-based models, e.g., continuous bag-of-words (CBOW)

[40], are superior to count-based models [41]. However, recently, Levy et al. [42] demon-

strated that the superior performance of prediction-based models results from certain selec-

tions of hyper-parameters rather than from the methods themselves. Since there are no

conclusive studies yet establishing which of the two types of models is superior, we carried

out experiments exploring both count-based and prediction-based models. For count-based
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models, we employed the standard model [43–45] and a compositional DSM, namely the

basic additive model [46]. We then compared these models with prediction-based models,

e.g., CBOW [40] and global vectors [47]. We demonstrate that prediction-based models per-

form better relative to the count-based and compositional DSMs. To the best of our knowl-

edge, our work is the first to utilise prediction-based DSMs for the automatic compilation of

a large-scale terminological resource.

Methods

Our workflow for constructing the term inventory is presented in Fig 1. Firstly, for the identifi-

cation of terms in text, we compiled a dictionary that includes all the names available in CoL,

EoL and GBIF, and then applied a string-matching method on the English subset of the BHL.

It is worth noting that name disambiguation is not necessary at this step. Next, given the iden-

tified terms, we learn their vector representations using two different approaches, i.e., count-

based and prediction-based, and for each of these main approaches we also apply the composi-

tional version. These approaches compute vector representations for both single and multi-

word terms. The cosine similarity between two vectors serves as an indicator of the corre-

sponding terms’ semantic relatedness: the higher the cosine similarity, the more related the

two terms are. We finally select the top-N candidates as the terms that are most semantically

related to a given term.

We employ an in-house implementation of the standard count-based model [43–45]. The

method applies basic pre-processing steps to normalise text contained in the BHL documents.

Normalisation includes stop-word and part-of-speech filtering to remove prepositions and

other common words, as well as lemmatisation, i.e., the mapping of a word to its base form

(also known as lemma). A context vector is then created for each term, based on all normalised

lexical units that occur within a symmetrical window of w words around the term. Each ele-

ment (or dimension) of a context vector represents a lexical unit; it holds the calculated corre-

lation—the log-likelihood ratio—between the corresponding lexical unit and the term.

However, as this step produces high-dimensional context vectors that tend to be sparse, we

maintain only the d most frequently occurring lexical units and discard the rest. The resulting

context vectors thus consist of only d dimensions.

The count-based approach has been shown to efficiently compute the semantic similarity

between single-word terms [43]. However, the performance of the model is known to decline

when applied to longer sequences (e.g., phrases or sentences) [48]. In response, researchers

Fig 1. Framework for constructing our biodiversity terminological inventory.

https://doi.org/10.1371/journal.pone.0175277.g001
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have explored the use of approaches based on compositional distributional semantics that

compute a word sequence’s lexical context as a function of the lexical context of its constituent

words [46, 49]. In this work, we experiment with an existing compositional semantics model

[46], namely the basic additive model (BAM). BAM computes the context distribution of a

multi-word term as a linear combination of its component word vectors (previously computed

using the standard count-based model). Given a multi-word term consisting of K words

z = w1, � � �, wi, � � �, wK and the context vectors of the K constituent words v(w1), � � �, v(wi), � � �,
v(wK), we compute the combined vector vBAM(z) of z using the follow equation:

vBAMðzÞ ¼
vðw1Þ

k vðw1Þ k
þ � � � þ

vðwiÞ

k vðwiÞ k
þ � � � þ

vðwKÞ

k vwK k
; ð1Þ

where kv(wi)k is the L2 norm of the context vector for the ith word.

Prediction-based models, meanwhile, were conceived based upon the same principle as

the count-based models. However, instead of purely counting words’ occurrences, predic-

tion-based models learn vector representations by optimising an objective function based

on the probability that a word co-occurs with the words within its neighbourhood or con-

text. By doing so, the models can estimate the contexts in which the corresponding words

tend to appear. Moreover, the resulting vectors usually have lower dimensionality than their

counterpart count-based vectors. In this paper, we used prediction-based models following

two well-known approaches: continuous bag-of-words (CBOW) [40] and global vectors
(GloVe) [47]. The CBOW model is similar to the feed-forward neural network language

model [50] which, has no hidden layer and whose projection layer is shared by all words.

This model predicts a word by using the continuous context around that word. Meanwhile,

GloVe optimises the likelihood of word probabilities based on context, to learn word repre-

sentations as in CBOW but uses ratios of co-occurrence probabilities as the basis for

learning.

It is worth noting that a compositional DSM can also be applied after learning single-word

vectors using prediction-based DSMs. To this end, we encoded multi-word terms according to

two different vector representations:

• Multi-word vectors. We introduced some slight modifications to the text by placing an

underscore between words comprising multi-word terms (e.g., by turning “chipping spar-

rows” into“chipping_sparrows”). We then input the resulting text to the count-based

model, CBOW and GloVe to directly learn vector representations for these multi-word

terms.

• Single-word vectors (BAM). After using count-based, CBOW and GloVe to learn single word

vectors, we calculate a multi-word term vector by applying BAM, i.e., cumulatively adding

the single-word vectors pertaining to a multi-word term’s individual components.

In summary, we have applied and evaluated six different distributional semantic models:

count-based, CBOW, GloVe, and their corresponding compositional models which we shall

refer to as count-based-BAM, CBOW-BAM and GloVe-BAM.

Comparative evaluation

In order to evaluate the performance of the proposed methods, we conducted a series of exper-

iments on species names from three categories: birds, mammals and plants. The performance

of each proposed method was measured by using metrics such as top-N accuracy, recall and

precision at N and mean average precision (MAP).

Constructing a biodiversity terminological inventory
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Data preparation

We programmatically acquired the English subset of BHL by using its publicly available

application programming interface (API) [51]. The API provides functions for retrieving the

OCR text of each document as well as corresponding metadata, e.g., the document’s language

and publication date. In this paper, we focus on a BHL subset consisting of pages whose lan-

guage—according to the value of a BHL metadata field—is English. We note, however, that

the value assigned to this language field is not always correct, leading to the inadvertent

inclusion of pages which were actually written in other languages (e.g., German). The result-

ing corpus contains more than 24 million pages amounting to a total of around 49 gigabytes

of data.

We were unable to find gold standard resources suitable for evaluating tools that link

semantically related terms to a given species name. To support the evaluation of our DSMs, we

utilised four taxonomies, i.e., the Catalogue of Life, the BirdLife Taxonomic Checklist, the

Interagency Taxonomic Information System (ITIS) and the PLANTS Database, for the compi-

lation of reference standard data sets containing semantic variants. In this work, for every pre-

ferred name n—the binomial name that is most commonly used to denote a certain species s—
we define semantic variants as the set of names containing: (1) scientific names synonymous to

n, and (2) vernacular names that denote s. In BirdLife, for instance, the scientific name Actitis
macularius has two strict-sense synonyms, i.e., Actitis macularia and Tringa macularia, and

one vernacular name, i.e., “spotted sandpiper”. Actitis macularius is the preferred name, and

Actitis macularia, Tringa macularia and “spotted sandpiper” are its corresponding semantic

variants (as shown in Table 1).

It is worth noting that a vernacular name can denote multiple taxa. For example, in Table 1,

“velvetleaf” is a vernacular name of both Cissampelos pareira and Abutilon theophrasti.
Although “velvetleaf” is treated as a semantic variant of each of Cissampelos pareira and Abuti-
lon theophrasti, the latter two should not be considered as the same taxon.

Two distinct reference standard data sets were compiled: one based on the manually

curated BirdLife, ITIS and PLANTS taxonomies, and the other based on the Catalogue of Life

(CoL) taxonomy, which was formed through the semi-automatic aggregation of many other

taxonomies. In compiling the former, the following data was gathered: (1) names of 10,424 rec-

ognised birds from the BirdLife Taxonomic Checklist v8.0 [52]; (2) names of 9,044 mammals

from the Interagency Taxonomic Information System (ITIS) [53]; and (3) names of 33,513

plants from the PLANTS database [54]. The data set based on CoL, meanwhile, consists of

three subsets: names of 9,666 species from the “Aves” taxonomic class, names of 5,593 species

from “Mammalia”, and names of 115,966 plants from “Magnoliopsida”.

Table 1. Examples from the reference standard data set extracted from manually curated databases.

Databases Preferred name Semantic variants

BirdLife Actitis macularius Actitis macularia, Tringa macularia, spotted sandpiper

Tachycineta bicolor tree swallow

Eudyptula minor little penguin, blue penguin, fairy penguin

ITIS Mammals Ateles paniscus Ateles ater, black spider monkey

Rhinoceros unicornis Rhinoceros indicus, Indian rhinoceros

Cricetus cricetus Cricetus frumentarius, Cricetus vulgaris, common hamster

The PLANTS database Cissampelos pareira velvetleaf

Campsis radicans Bignonia radicans, Tecoma radicans, trumpet creeper

Abutilon theophrasti Abutilon abutilon, Abutilon avicennae, velvetleaf

https://doi.org/10.1371/journal.pone.0175277.t001
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We then selected preferred names that appear in both the BHL corpus and the reference

standards. We retained only those that have at least one synonym or vernacular name accord-

ing to the reference standards, and which appear in the BHL corpus frequently enough, i.e., at

least 50 times. We finally randomly selected 500 preferred names for each of the bird, mammal

and plant categories.

As mentioned above, scientific names of species come in various forms. From a computa-

tional perspective, it is a less interesting or trivial task to identify synonymous scientific names

that differ from the binomial form only in terms of having the sub-genus or sub-species name.

We thus retained in the reference standard only the scientific names that conform to the bino-

mial nomenclature; those that include sub-genus and sub-species names as well as authority

fields were not included in this evaluation, although they will be covered in our future work.

For each of the bird, mammal and plant categories, the resulting reference standard consists of

more than 1,000 unique names accounting for both preferred names and their variants, i.e.,

synonymous scientific and vernacular names. More of these details are summarised in Table 2.

Names contained in the reference standard are provided in S1 Text.

Our analysis of the reference standard data sets reveals that there are many semantic vari-

ants sharing identical component words with preferred names. Some of them have identical

genus names since the species originated from the same genus in the taxonomy tree. For exam-

ple, as shown in Table 1, Cricetus cricetus has semantic variants such as Cricetus frumentarius
and Cricetus vulgaris, all sharing the same genus name Cricetus. Some of them have their spe-

cific epithet identical with the genus of the preferred name. For instance, two of the semantic

variants of Campsis radicans are Bignonia radicans and Tecoma radicans, all having in common

the name radicans. We show the frequency of such phenomena in Table 3. It can be seen that a

large number of plant names (about 68% for PLANTS and 85% for CoL) have overlaps

between the preferred names and their semantic variants, whilst this ratio is less than 29% in

the case of bird and mammal names.

Table 2. Frequencies of semantic variants in the reference standard data sets.

Category Source No. preferred names No. of variants Total names Avg. no. of variants per preferred name

Birds BirdLife 500 628 1128 1.26

CoL 500 622 1122 1.24

Mammals ITIS 500 629 1129 1.26

CoL 500 635 1135 1.27

Plants PLANTS 500 770 1270 1.54

CoL 500 1195 1695 2.39

https://doi.org/10.1371/journal.pone.0175277.t002

Table 3. Number of semantic variants that share genus and specific epithet names with the preferred names. No. of preferred names: the number of

preferred species names that share a component name with at least one variant; No. of variants with shared genus: the number of variants that share the

genus name with the preferred names; No. of variants with shared specific epithet: the number of variants that share the specific epithet name with the pre-

ferred names.

Category Source No. of preferred names with shared component

name

No. of variants with shared

genus

No. of variants with shared specific

epithet

Birds BirdLife 70 24 50

CoL 114 30 89

Mammals ITIS 135 102 65

CoL 144 106 62

Plants PLANTS 343 341 124

CoL 426 697 193

https://doi.org/10.1371/journal.pone.0175277.t003
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Evaluation parameters and metrics

In applying the six distributional semantic models that we selected, we defined the lexical con-

text as the words surrounding a term within a window w, where w = 3. The resulting context

vectors have a dimensionality of 150,000 and 300 for count-based and prediction-based mod-

els, respectively.

We used four different metrics to measure the performance of the DSMs, namely: top-N
accuracy, precision and recall at N, and mean average precision (MAP). For a given term, a

model generates a list of semantically related terms, ranked according to their cosine similarity.

Rather than showing the performance obtained upon taking only the topmost candidate, we

measure performance using the aforementioned metrics while taking top-N candidates, where

N is set to values ranging from 1 to 20 in an incremental fashion. Top-N accuracy [55] is the

ratio between the number of input terms whose top-N ranked candidates include at least one

correct semantic variant, and the total number of terms in consideration. Precision and recall

at N (precision@N and recall@N, respectively) are calculated in the standard manner: preci-

sion@N is the number of correctly identified semantic variants over N, whilst recall@N is the

total number of correctly identified semantic variants out of the total number of semantic vari-

ants in the reference standard. Meanwhile, MAP [56] is a common metric used in information

retrieval to evaluate ranked results. An advantage of MAP over the two previous metrics is that

it measures precision at various levels of recall, hence eliminating the need to set a cut-off

value N. In addition, MAP takes the ranked order of all candidates into account, whilst the

other metrics consider the N topmost candidates as a set, i.e., without considering order.

Results

This subsection describes the results of our DSM models when compared to semantic variants

in reference standard data sets. Statistical tests applied to determine the significance of the per-

formance-wise differences amongst the models are presented in the next subsection.

Birds. The results on bird names are presented in Fig 2 (top-N accuracy) and Fig 3 (preci-

sion@N vs. recall@N). We can observe that CBOW and Glove obtain the best performance in

Fig 2. Top-N accuracy obtained by DSMs for bird names.

https://doi.org/10.1371/journal.pone.0175277.g002
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terms of top-N accuracy, precision and recall when compared to all other DSM models. Results

from GloVe are only slightly better than CBOW’s when only up to the top three candidates are

considered, whilst CBOW is superior when the 4th–20th topmost candidates are evaluated. It

can also be observed that in this species category, the non-compositional vectors performed

better than the compositional counterparts both for predictive-based and count-based models.

A similar trend holds in the evaluation results according to MAP, which are presented in

Table 4. As with the results using accuracy, precision and recall, non-compositional models

performed better than compositional ones, with GloVe obtaining the best performance

amongst all models. Between BirdLife and CoL bird names, the performance of each model is

ranked quite similarly for all metrics.

Mammals. Top-N accuracy and precision-vs-recall curves for the six models are shown in

Figs 4 and 5, respectively. Compared to the evaluation results on bird names, there are two

minor differences. Firstly, GloVe obtained the best performance, closely followed by CBOW

for every metric. Secondly, whilst count-based BAM still performs better than the prediction-

based compositional models, performance gains over Glove-BAM are much smaller than in

the case of bird names. In terms of MAP, our results, which are shown in the fourth and fifth

columns of Table 4, reveal that GloVe is again the best performing model. The similar trends

Fig 3. Precision@N versus recall@N obtained by DSMs for bird names when N is varied from 1 to 20.

https://doi.org/10.1371/journal.pone.0175277.g003

Table 4. The Mean Average Precision (MAP) obtained by each method on bird, mammal and plant names. Bold numbers denote the highest scores

obtained per general DSM type in each standard.

Approach Model Birds Mammals Plants

BirdLife CoL ITIS CoL PLANTS CoL

Count-based Count-based 44.28 49.86 39.04 39.27 38.79 36.24

Count-based-BAM 34.15 36.90 30.54 30.25 44.36 45.40

Prediction-based CBOW 69.56 73.34 52.17 53.12 62.14 51.49

CBOW-BAM 13.28 16.86 19.46 19.08 49.03 51.78

GloVe 72.79 77.11 70.76 73.30 28.30 33.77

GloVe-BAM 22.86 24.06 27.44 27.82 46.71 46.65

https://doi.org/10.1371/journal.pone.0175277.t004
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in the models’ performance for mammal and bird names were expected, given the similarities

between the two reference standard data sets as depicted in Tables 2 and 3. Comparing the per-

formance when evaluating against ITIS mammal names and that when using CoL, we can see

only a small difference, i.e., about 0.2 to 2.5 percentage points.

Plants. Results on plant names based on top-N accuracy and precision/recall are illus-

trated in Figs 6 and 7, respectively. In comparison to results on bird and mammal names, the

models performed differently for this species category. On the PLANTS database, CBOW per-

formed the best amongst all DSMs, followed by all the compositional models. With CoL plant

names, CBOW-BAM and CBOW are the best ones and also comparable to each other, with

Fig 4. Top-N accuracy of DSMs for mammal names.

https://doi.org/10.1371/journal.pone.0175277.g004

Fig 5. Precision@N versus recall@N obtained by DSMs for mammal names when N is varied from 1 to 20.

https://doi.org/10.1371/journal.pone.0175277.g005
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GloVe-BAM trailing right behind. The performance of standard GloVe in this category is

unexpectedly poor for all metrics. The results for this category based on MAP also show the

same pattern as in those based on the other metrics (as presented in the last two columns of

Table 4).

Discussion

We note that our DSMs obtained similar performance on bird and mammal names but quite

different results on plant names. Amongst the two count-based models, the standard one

obtained the best scores on both sets of reference standards for bird and mammal names, but

Fig 6. Top-N accuracy obtained by DSMs for plant names.

https://doi.org/10.1371/journal.pone.0175277.g006

Fig 7. Precision@N versus recall@N obtained by DSMs for plant names when N is varied from 1 to 20.

https://doi.org/10.1371/journal.pone.0175277.g007
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performs worse than the compositional model on plant names. Regarding prediction-based

ones, GloVe shows the same trend, i.e., it is better than CBOW in the case of bird and mammal

names but performed poorly on plant names. The compositional prediction-based models

exhibited optimal performance on plant names. However, they performed poorly on bird and

mammal names, with GloVe-BAM obtaining better results than CBOW-BAM.

In order to verify our claims, we conducted one-way ANOVA tests followed by multiple

comparison tests for each category. We used MAP scores as the basis of comparison as they

effectively capture precision at different recall levels. Given the multiple models involved, we

applied comparison methods that can provide family-wise error rates, such as Bonferroni and

Dunnett’s tests [57]. For the latter test we used the highest scoring methods as the control

model, i.e., CBOW and GloVe. Detailed results of our statistical significance tests are available

in S1 File. Consistent conclusions were drawn based on both tests, which can be summarised

as follows: (1) The performance of GloVe is not significantly better than that of CBOW, while

both models significantly outperformed the remaining DSM methods on BridLife and CoL

bird names (p< 0.01); (2) on both ITIS and CoL mammal names, GloVe was shown to per-

form best (p< 0.01); and (3) with respect to names from the PLANTS database, CBOW is

superior (p< 0.01), while in the case of CoL plant names, there is no significant difference

between the performance of CBOW and CBOW-BAM; the rest of the models, however, dem-

onstrated significantly lower performance on both PLANTS and CoL (p< 0.01).

The superior performance of compositional models in the plant category can be explained

by the fact that semantic variants in this category, unlike in the case of bird and mammal

names, are more likely to share genus or specific epithet names with the preferred names

(Table 3). This meant that the compositional model-derived vector representations of semantic

variants contained common elements, thus leading to increased vector similarity. This, in

turn, increased the likelihood of recognising these names as semantically related. The optimal

performance obtained by compositional models was likewise observed by Thompson et al.

[38] in the case of medical concepts.

The difference in performance between CBOW-BAM and CBOW on PLANTS and CoL

plant names can be explained by the different proportions of names with shared components

in each reference standard. Table 3 shows that about 85% of CoL plant names contain compo-

nents that overlap with their semantic variants, which is higher than that for the PLANT data-

base (about 68%). As explained above, a higher proportion of names with shared components

leads to a boost in the performance of compositional models. Therefore, it is not surprising

that the performance of CBOW-BAM is comparable to that of CBOW in the case of CoL plant

names, but relatively worse on names from the PLANTS database.

Some observations on the highest-scoring results indicate that the applied methods gener-

ate semantically related names that are not contained in the reference standard data sets. For

example, for the bird called “tree swallow”, BirdLife provides only one corresponding name,

i.e., Tachycineta bicolor. However, the best performing method identifies the following as the

five top-ranked candidates: “barn swallow”, “bank swallow”, “cliff swallow”, Tachycineta
bicolor and Petrochelidon pyrrhonota. Whilst the first three names and the last one, which is

the scientific name of “cliff swallow”, are not semantic variants according to BirdLife, further

verification with the Cornell Lab of Ornithology’s database showed that these species are simi-

lar to “tree swallow” [58]. Another interesting example is the case of the mammal Rhinoceros
unicornis, for which our method predicted the following five topmost candidates: “Indian rhi-

noceros”, Rhinoceros indicus, Diceros bicornis, Rhinoceros sondaicus, and “black rhinoceros”.

According to ITIS, only the first two are semantic variants; the other three, of which “black rhi-

noceros” is a common name of Diceros bicornis, are not recorded as semantic variants of Rhi-
noceros unicornis. However, ARKive, a global non-profit initiative that collects information

Constructing a biodiversity terminological inventory

PLOS ONE | https://doi.org/10.1371/journal.pone.0175277 April 17, 2017 14 / 23

https://doi.org/10.1371/journal.pone.0175277


about the world’s endangered species, shows that they are closely related to Rhinoceros unicor-
nis [59]. These findings demonstrate that by applying text mining techniques, we can automat-

ically extract a richer set of related names that can potentially be used to expand lexical

resources.

Currently, our methods do not handle scientific names appearing in their abbreviated

forms, e.g., A. insignis. As discussed earlier, such abbreviations lead to ambiguity. Including

them in the term inventory thus requires disambiguation, i.e., selecting the most likely correct

expansion of A. insignis out of multiple possible ones. This task is an important step towards

fully understanding textual content [60], and will be part of our future work. We finally

selected all preferred species names that appear in BHL documents with a frequency of at least

five, resulting in a final list of 288,562 names. The GloVe model was applied on them to con-

struct a full inventory. For each species name in the inventory, the 20 topmost semantically

related names are provided, together with their corresponding similarity scores. Furthermore,

each name in the inventory has been linked to the GNI through the assignment of Global

Names URIs. The term inventory is publicly available at http://metashare.metanet4u.eu/go2/

bhl_inventory.

Application to automatic query expansion

In addition to the evaluation presented above, we evaluated our term inventory from a more

practical point of view. Specifically, we implemented a visual search interface incorporating

our term inventory to enable automatic query expansion. One of the goals in developing this

interface is to evaluate whether the term inventory can be useful in terms of increasing the

number of relevant documents retrieved by a search engine. In this way, the term inventory

facilitates the suggestion of terms that are semantically related to the species name supplied as

a query, which are in turn appended to the query. As opposed to other automatic query expan-

sion methods [61], the inclusion of additional terms to expand a query depends upon the

user’s preferences, making our interface’s behaviour similar to that of a recommender system

[62]. Another goal is to assess the usefulness of the automatically suggested semantically

related terms that are uniquely available in our inventory, distinguishing it from several other

taxonomies such as CoL, EoL and GBIF. With the integrated term inventory, the interface can

show users not only documents matching the original query but also those that mention

semantically relevant species which have, for example, shared characteristics such as habitat or

taxonomic classification. For instance, as a user searches for documents pertaining to “lion”, it

might be useful for him or her to find documents mentioning not only “lion” but also Panthera
leo—the scientific name of “lion”—and “jaguar”—a big cat similarly belonging to the Panthera
genus. In contrast, without our term inventory, the search results will include only documents

that match exactly the same species, e.g., “lion” and Panthera leo.

Visual search interface

The tool serves as a regular search interface: it retrieves documents relevant to a user-supplied

query, and returns them in a list whose entries are ranked by relevance. The web-based inter-

face is shown in Fig 8, together with a description of its main components. On the left-hand

side is a context viewer (inspired by the overview+detail approach [63]) that provides an over-

view of the results, indicating the portion of the ranked list that the user is currently looking at.

Unlike regular search interfaces, terms semantically related to the query species name are also

presented on the right-hand side of the screen as thumbnails. We aimed to present the sug-

gested terms in a simple yet informative manner. To this end, each thumbnail is displayed

with two parallel indicator bars, one representing the term’s frequency in the BHL corpus and
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the other its relatedness to the query term. This eliminates the need to present their exact val-

ues to the user, facilitating a more intuitive visual comparison of these measures. Within the

thumbnails, there are also small icons that indicate whether the name exists as a semantically

related term in our term inventory, in an external resource (e.g., CoL, EoL, and GBIF) or in

both. For example, in Fig 8, there are five species names returned by our interface (under the

heading “You might also be interested in. . .”) for the query Orchard oriole, the first of which

was suggested by both our term inventory and external resources, and the remaining four rec-

ommended by just our term inventory (as indicated by the icons at the upper right-hand cor-

ner of each thumbnail). Hovering over a thumbnail reveals detailed information about the

suggested term. Images of the species retrieved from EoL (via their web services [64]) are

shown for reference purposes.

Upon selection of any of the thumbnails, the terms that they correspond to become

appended to the original query (with an OR operator) thus expanding it and retrieving more

documents. In order to help the user assess which of the documents were retrieved as a result

of expanding the query, and which ones were part of the original search result, different back-

ground colours are used both in the search result list and in the context viewer. The front-end

was implemented using the JavaScript-based library D3 [65]. Meanwhile, as the interface’s

underlying search engine, Apache SolR [66] was used for indexing BHL text and matching

Fig 8. Visual search interface incorporating suggested semantically related names for query expansion. A- Initial and expanded

query. B- Search result list and context viewer. The context viewer on the left-hand side shows a zoomed out view of the retrieved list.

Documents retrieved according to the expanded query are shown with a light blue background. C- Thumbnails with suggested names for

query expansion. Apart from a relevant image, each thumbnail depicts the suggested term’s frequency within BHL documents, its

relatedness to the query term, and the provenance of the suggestion, i.e., our term inventory or other external resources such as CoL, EoL

and GBIF.

https://doi.org/10.1371/journal.pone.0175277.g008
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queries against them. The most current version of the interface, which is available at http://

nactem.ac.uk/BHLQueryExpansion/, is built upon 2 million BHL pages indexed with the bird,

mammal and plant species names used in the evaluation described in the previous section.

User feedback

We invited 20 biologists to assess the usefulness of the interface. They were requested to

explore the search system using six different scientific or vernacular species names as queries.

Whilst three of the queries were pre-supplied by us, for the other three, the users were asked to

enter their own preferred species names belonging to any of the following three taxonomic

classes: “Aves” (birds), “Mammalia” (mammals), and “Magnoliopsida” (flowering plants). Sci-

entific names had to be provided according to the binomial nomenclature, consisting only of

the genus and specific epithet, e.g., Lepus timidus and Spizella passerina. In exploring the

results of each query, we encouraged them to select a few of the terms automatically suggested

by the interface, in order for them to have an appreciation of the effects of the query expansion

feature.

We designed a questionnaire sheet containing eleven questions, eight of which were com-

pulsory; the other three were optional. The eight compulsory questions consist of two subsets.

The first four questions were formulated to evaluate whether the expansion of queries in a

semi-automatic manner is useful or not. In particular, one of the questions aims to estimate

the helpfulness of suggested species names that are not necessarily semantic variants but are

semantically related, i.e., through shared habitat, geographic location or taxonomic class as in

the case of “jaguar” and “lion”. The second subset of four questions sought to obtain feedback

on the visual functionalities of the interface. In each question, users were asked to assess a spe-

cific functionality by rating its usefulness/helpfulness from 1 (not useful/helpful at all) to 5

(very useful/helpful). These questions are presented in detail in S2 File.

We collected 13 sets of responses from 20 biologists (provided for the reader’s reference as

S3 File). Their ratings for the eight compulsory questions are depicted in Fig 9. We can see that

the median ratings for the first four questions are consistently high, i.e., from 4 to 5, which can

be generally thought of as an indication that our users find the term inventory-based query

expansion functionality to be useful. Based on the responses to Question 1, most users agreed

that the inventory’s suggested terms are useful. In terms of broadening the scope of search

results (covered by Questions 2 and 4), responses ranged from 3 to 5, indicating that users are

generally satisfied with this system feature. For Question 3, which assessed whether automati-

cally suggested semantically related terms are useful although not all of them are exact syno-

nyms, all of our users responded positively (with answers ranging from 3 to 5), except for one

who gave a rating of 2. These responses reveal that most users share the opinion that it is help-

ful to be presented with suggestions of species names that are not necessarily synonyms but

may be related to the original query in other ways, e.g., in terms of shared habitat, taxonomic

class, or geographic location.

Meanwhile, we received diverse responses to the interface-focussed questions. Amongst

our interface’s four visual features, the images (Question 5), relatedness indicator (Question 6)

and different background colours (Question 8) were considered very useful, despite a few out-

lier ratings from some users. The users’ ratings of the frequency indicator (Question 7) show

that it is deemed as relatively less useful, with a median value of 3. One reason for such lower

rating could be the lack of a more detailed explanation of what the depicted frequency value

stands for.

One of the optional questions in the questionnaire was aimed at gathering feedback on the

features of the interface that the users liked the most. Eight of the users liked the capability of
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the system to automatically incorporate additional terms into the query, thus retrieving a

broader set of search results. For the other users, meanwhile, what struck them the most are

some of the interactive visualisations that are present in the interface, e.g., the thumbnails with

images and indicator bars. We are aware, however, that the images retrieved by the EoL web

service for certain species are incorrect; part of our future work will look into alternative image

sources.

Based on the users’ suggestions, we enhanced the interface with two additional functionali-

ties. Firstly, we have enabled users to perform either query expansion or query refinement, by

toggling between the boolean operators OR and AND. Secondly, we addressed the issue of

misspellings at the query level by incorporating string similarity methods into the interface. In

this way, correctly spelt names will be suggested to users when they input misspelt ones as

their initial query. Although majority of our recruited users agreed that the term inventory-

driven automatic query expansion is useful, in the future we could, for instance: (1) allow the

user to enter more than one species name as his/her query; (2) give the user the capability to

Fig 9. Ratings for the visual search interface given by thirteen users. The red line indicates the median rating for each question.

https://doi.org/10.1371/journal.pone.0175277.g009
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remove any spurious results brought about by the automatically expanded query; and (3) fur-

ther improve handling of misspellings, i.e., enable the capability to retrieve documents even if

the names contained within their text are misspelt versions of a user’s query.

Conclusions

We have proposed a method for automatically constructing a term inventory for biodiversity

using DSMs to identify names which are semantically related to any given species name.

Firstly, models were trained on the English subset of BHL. Evaluation of their performance

according to four different metrics reveals that prediction-based DSMs performed significantly

better than count-based DSMs, with the GloVe model obtaining the best performance in most

cases. We also observed that compositional DSMs perform better than non-compositional

ones in the case of multi-word terms sharing component words. The resulting term inventory

contains more than 288,000 scientific and vernacular names of species. For each species name,

its 20 topmost semantically related terms are provided, together with their respective similarity

scores. Upon manual inspection of some sample terms, we observed that our term inventory

contains semantically related names that are not yet recorded in other published dictionaries

and taxonomic resources.

We demonstrated one application of the term inventory, i.e., semi-automatic search query

expansion. To evaluate the effect of query expansion based on automatically suggested species

names, we developed a system that incorporated our term inventory into a visual search inter-

face. Upon user query input, the interface suggests a list of semantically related terms. The

selection of any of these suggested terms expands the original query, thus broadening the

scope of the search results. Thirteen experts evaluated the usefulness of the search interface’s

functionalities, most of whom agreed that the semantically related terms suggested by our

term inventory are useful.

Our work has demonstrated that the text mining-based construction of a terminological

inventory is feasible, especially for domains in which large amounts of textual data are avail-

able. We showed how the resulting term inventory could potentially enhance search systems,

by facilitating the automatic expansion of search queries.

Our methods were developed with the aim of capturing semantically related names, and are

most useful in the context of search and query expansion. Adapting our methods to capture

only strict-sense synonyms for the purpose of contributing to resources that contain only such

type of synonyms (as in the case of the Global Names Index) could form part of our future

work. We envision that this type of curation can be carried out in a semi-automatic manner,

in that a taxonomist validates the recommendations supplied by the algorithm, alongside any

textual evidence from the literature that was used to infer the association. Although manual

effort will still be required, we could expect significant benefits in terms of (1) reduced curation

time, as only a small sample of semantic variants will need to be validated per species name;

and (2) the high coverage that our methods obtain by mining information from large amounts

of biodiversity textual content.
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