129 research outputs found

    Nitrogen Emission and Deposition: The European Perspective

    Get PDF
    Europe has been successful in reducing the emissions of several nitrogenous pollutants over recent decades. This is reflected in concentrations and deposition rates that have decreased for several components. Emissions of nitrogen containing gases are estimated to have decreased in Europe by 10%, 21%, and 14% for NO, NOx, and NH3, respectively, between 1990 and 1998. The main reductions are the result of a decrease in industrial and agricultural activities in the east of Europe as a result of the economic situation, measures in the transport sector, industry and agricultural sector, with only a small part of the reduction due to specific measures designed to reduce emissions. The reduction is significant, but far from the end goal for large areas in Europe in relation to different environmental problems. The Gothenburg Protocol will lead to reductions of 50 and 12% in 2010 relative to 1990 for NOx and NH3, respectively. The N2O emissions are expected to grow between 1998 and 2010 by 9%. Further reductions are necessary to reach critical limits for ecosystem protection, air quality standards and climate change. Emissions of nitrogen compounds result from an overload of reactive nitrogen, which is produced by combustion processes, by synthesis of ammonia or by import from other areas as concentrated animal feeds. Although some improvements can be made by improving the efficiency of combustion processes and agricultural systems, measures to reduce emissions substantially need to be focused on decreasing the production or import of reactive N. Reactive N ceilings for regions based on critical limits for all N-related effects can help to focus such measures. An integrated approach might have advantages over the pollutant specific approach to combat nitrogen pollution. This could provide the future direction for European policy to reduce the impacts of excess nitrogen

    Data assimilation of CrIS NH3 satellite observations for improving spatiotemporal NH3 distributions in LOTOS-EUROS

    Get PDF
    Atmospheric levels of ammonia (NH3) have substantially increased during the last century, posing a hazard to both human health and environmental quality. The atmospheric budget of NH3, however, is still highly uncertain due to an overall lack of observations. Satellite observations of atmospheric NH3 may help us in the current observational and knowledge gaps. Recent observations of the Cross-track Infrared Sounder (CrIS) provide us with daily, global distributions of NH3. In this study, the CrIS NH3 product is assimilated into the LOTOS-EUROS chemistry transport model using two different methods aimed at improving the modeled spatiotemporal NH3 distributions. In the first method NH3 surface concentrations from CrIS are used to fit spatially varying NH3 emission time factors to redistribute model input NH3 emissions over the year. The second method uses the CrIS NH3 profile to adjust the NH3 emissions using a local ensemble transform Kalman filter (LETKF) in a top-down approach. The two methods are tested separately and combined, focusing on a region in western Europe (Germany, Belgium and the Netherlands). In this region, the mean CrIS NH3 total columns were up to a factor 2 higher than the simulated NH3 columns between 2014 and 2018, which, after assimilating the CrIS NH3 columns using the LETKF algorithm, led to an increase in the total NH3 emissions of up to approximately 30 %. Our results illustrate that CrIS NH3 observations can be used successfully to estimate spatially variable NH3 time factors and improve NH3 emission distributions temporally, especially in spring (March to May). Moreover, the use of the CrIS-based NH3 time factors resulted in an improved comparison with the onset and duration of the NH3 spring peak observed at observation sites at hourly resolution in the Netherlands. Assimilation of the CrIS NH3 columns with the LETKF algorithm is mainly advantageous for improving the spatial concentration distribution of the modeled NH3 fields. Compared to in situ observations, a combination of both methods led to the most significant improvements in modeled monthly NH3 surface concentration and NH4+ wet deposition fields, illustrating the usefulness of the CrIS NH3 products to improve the temporal representativity of the model and better constrain the budget in agricultural areas

    The European Nitrogen Problem in a Global Perspective

    Get PDF
    Nature of the problem (science/management/policy): Reactive nitrogen has both positive and negative effects on ecosystem and human health. Reactive nitrogen is formed through the use of fossil fuels releasing large amounts of nitrogen oxides into the atmosphere and through the production of ammonia by the Haber-Bosch process and using it in agriculture to increase our food, feed and fuel production. While the use of nitrogen as a fertilizer has brought enormous benefits, losses of fertilizer nitrogen and combustion nitrogen to the environment lead to many side effects on human health, ecosystem health, biodiversity and climate. Approaches: The European nitrogen problem is placed in a global perspective, showing the European nitrogen fixation, transport and environmental impacts compared to different regions of the globe. Key findings/state of knowledge: An overview is provided of the nitrogen issues and challenges in Europe and places them in a broader global context. Europe is one of the leading producers of reactive nitrogen, but it is also the first region in the world where the issue was recognized and in some parts of Europe the reactive nitrogen losses to the environment started to decrease. There is a clear policy on reducing nitrogen oxide emissions that led to reductions by implementation of end of pipe technology. Fertilizer production and use decreased in Europe in the early 1990s, in particular, due to the economic recession in the Eastern part of Europe. Currently, the fertilizer use in EU25 is about 12 Mton, which is 4 Mton lower than in the 1980s and gradually increasing. The nitrogen use efficiency of nitrogen in the EU, defined as the net output of N in products divided by the net input is about 36%. This is lower than the world average (50%) as fertilization rates are much higher. Major uncertainties/challenges: The effects related to losses of nitrogen in Europe include the exceedance of critical loads and the resulting biodiversity loss, ground water pollution and eutrophication of ecosystems; eutrophication of open waters and coastal areas resulting in algae blooms and fish kills; increased levels of NOx and aerosols in the atmosphere resulting in human health impacts and climate change; and the increased emissions of the greenhouse gas nitrous oxide resulting in climate change. Nitrogen also affects the biogeochemical cycles of other components such as carbon. Recommendations (research/policy): The complexity of multi-pollutant ¿ multiple-effect interactions is a major hurdle to improving public awareness.JRC.H.1-Water Resource

    European Nitrogen Assessment - Technical Summary

    Get PDF
    A century ago, when the world depended on fossil nitrogen and manure recycling, there wasinsuffi cient reactive nitrogen to feed the growing human population. With the invention of theHaber–Bosch process, humans found a way to make cheap reactive nitrogen from the almostinexhaustable supply of atmospheric di-nitrogen. What humans did not anticipate was that themassive increase in reactive nitrogen supply, exacerbated by fossil fuel burning, would lead toa web of new environmental problems cutting across all global-change challenges.Th e European Nitrogen Assessment presents the fi rst full, continental-scale assessmentof reactive nitrogen in the environment and sets the problem in context by providing amultidisciplinary introduction to the key processes in the nitrogen cycle. Issues of up-scalingfrom fi eld, farm and city to national and continental scales are addressed in detail withemphasis on opportunities for better management at local to global levels. A comprehensiveseries of maps showing nitrogen pools and fl uxes across Europe also highlight the locationof the major threats and allow a comparison of national budgets for the fi rst time. Five keysocietal threats posed by reactive nitrogen are assessed, providing a framework for a set ofpolicies that can be used for joined-up management of the nitrogen cycle in Europe. Th isincludes the fi rst cost–benefi t analysis for diff erent reactive nitrogen forms and considerationof future scenarios.JRC.DDG.H.2-Climate change and air qualit

    Maatregelen Natuurinclusieve landbouw

    Get PDF
    In deze notitie wordt een overzicht gegeven van maatregelen voor natuurinclusieve landbouw. Dit is een vorm van duurzame landbouw die optimaal gebruik maakt van de natuurlijke processen en deze integreert in de bedrijfsvoering. Natuurinclusieve landbouw begint met een gezonde bodem, produceert voedsel binnen de grenzen van natuur, milieu en leefomgeving en heeft positieve effecten op de biodiversiteit en het klimaat

    PM2.5 pollution is substantially affected by ammonia emissions in China

    Get PDF
    Urban air quality in China has been declining substantially in recent years due to severe haze episodes. The reduction of sulfur dioxide (SO2) and nitrogen oxide (NOx) emissions since 2013 does not yet appear to yield substantial benefits for haze mitigation. As the reductions of those key precursors to secondary aerosol formation appears not to sufficient, other crucial factors need to be considered for the design of effective air pollution control strategies. Here we argue that ammonia (NH3) plays a - so far - underestimated role in the formation of secondary inorganic aerosols, a main component of urban fine particulate matter (PM2.5) concentrations in China. By analyzing in situ concentration data observed in major cities alongside gridded emission data obtained from remote sensing and inventories, we find that emissions of NH3 have a more robust association with the spatiotemporal variation of PM2.5 levels than emissions of SO2 and NOx. As a consequence, we argue that urban PM2.5 pollution in China in many locations is substantially affected by NH3 emissions. We highlight that more efforts should be directed to the reduction of NH3 emissions that help mitigate PM2.5 pollution more efficiently than other PM2.5 precursors. Such efforts will yield substantial co-benefits by improving nitrogen use efficiency in farming systems. As a consequence, such integrated strategies would not only improve urban air quality, but also contribute to China's food-security goals, prevent further biodiversity loss, reduce greenhouse gas emissions and lead to economic savings

    Instrument development and application in studies and monitoring of ambient ammonia, Atmos

    Get PDF
    Abstract During recent years, it has become clear that ammonia is an important gas in relation to di!erent environmental issues, such as acidi"cation, eutrophication, human health and climate change (through particle formation). Therefore, there is a growing need to develop and apply instrumentation suitable for research into emission, dispersion, conversion and deposition of ammonia and ammonium. Recently, several instruments were developed suitable for measuring concentrations in ambient conditions even at very low levels, such as ammonia sensors suitable for monitoring and research, deposition measuring systems and aerosol samplers for on-line measurement of aerosol composition. These instruments have been tested and applied in a number of "eld studies. These studies include dry deposition measurements, ammonium nitrate studies in relation to the (in)direct aerosol e!ect, emission studies and policy evaluation with concentration and deposition monitoring data. The policy evaluation study showed that the measures to reduce ammonia emissions were not as successful as projected beforehand by statistical studies

    Future Scenarios of Nitrogen in Europe

    Get PDF
    The future effects of nitrogen in the environment will depend on the extent of nitrogen use and the practical application techniques of nitrogen in a similar way as in the past. Projections and scenarios are appropriate tools for extrapolating current knowledge into thefuture. However,these tools will not allow future system turnovers to be predicted. Approaches• In principle, scenarios of nitrogen use follow the approaches currently used for air pollution,climate ,or ecosystem projections. Short term projections (to 2030) are developed using a ‘baseline’ path of development,which considers abatement options that are consistent with European policy. For medium-term projections (to 2050) and long-term projections, the European Nitrogen Assessment (ENA) applies a ‘storyline’ approach similar to that used in the IPCC SRES scenarios. Beyond 2050 in particular, such story lines also take into account technological and behavioral shift s.Key findings/state of knowledge• The ENA distinguishes between driver-oriented and effect-oriented factors determining nitrogen use. Parameters that cause changes in nitrogen fixation or application are called drivers. In a driver-based approach, it is assumed that any variation of these parameters will also trigger a change in nitrogen pollution. In an effect-based approach, as the adverse effects of nitrogen become evident inthe environment, introduction of nitrogen abatement legislation requiring the application of more efficient abatement measuresis expected. This approach needs to rely on a target that is likely to be maintained in the future (e.g.human health). Nitrogen abatement legislation basedon such targets will aim to counter any growth in adverse environmental effects that occur as a result of increased nitrogen application.• For combustionand industry, technical fixes forabatement are available. Allscenarios agree in projecting a decrease in NOx emissions.Yet agricultural nitrogen use is expected to remain the leading cause of nitrogen release to the environment, as options to reduce emissions are limited. Thus, major changes will occur only if the extent of agricultural production changes, which may possibly be triggered by decreasing population numbers in Europe.The scenarios presented here project modest changes in NH 3 and N 2 O emissions, or nitrateleaching, but do not agree on the direction of these changes.•Agricultural activity (and thus nitrogen loads to the environment) may decrease strongly if the European population adopts a healthier‘low meat’ diet leading to lower nitrogenlosses related to animal husbandry. Change to a ‘healthy diet’ across the EU, which consists of 63% less meat and eggs, would reduce ammonia emissions from animal production by 48%. However, if an agricultural area previously used for animal feed production is utilized for biofuel crops, additional nitrogen fertilizer maybe required, which will partially offset reductions of nitrogen leakage to the environment. Major uncertainties/challenges• International trade in nitrogen-containing goods (agricultural as well as industrial) represents a key uncertainty and is difficult to project. Estimating the demand for such goods for Europe alone may not at all reflect European production and related environmental effects. The industrial use of nitrogen is alsovery poorly understood, but it is expected to continue to grow considerably. The respective environmental impacts of such products cannot be clearly discerned from statistical information.Recommendations• Scenarios need to be continuously updated in terms of economic, technical, and societal trends to reflect improved understanding of these factors. Using nitrogen budgets as tools could improve the consistency of scenarios.JRC.DDG.H.2-Climate change and air qualit

    A World of Cobenefits: Solving the Global Nitrogen Challenge

    Get PDF
    Nitrogen is a critical component of the economy, food security, and planetary health. Many of the world\u27s sustainability targets hinge on global nitrogen solutions, which, in turn, contribute lasting benefits for (i) world hunger; (ii) soil, air, and water quality; (iii) climate change mitigation; and (iv) biodiversity conservation. Balancing the projected rise in agricultural nitrogen demands while achieving these 21st century ideals will require policies to coordinate solutions among technologies, consumer choice, and socioeconomic transformation
    • …
    corecore