9 research outputs found

    Prophylactic Melatonin for Delirium in Intensive Care (Pro-MEDIC): Study protocol for a randomised controlled trial

    Get PDF
    Background: Delirium is an acute state of brain dysfunction characterised by fluctuating inattention and cognitive disturbances, usually due to illness. It occurs commonly in the intensive care unit (ICU), and it is associated with greater morbidity and mortality. It is likely that disturbances of sleep and of the day-night cycle play a significant role. Melatonin is a naturally occurring, safe and cheap hormone that can be administered to improve sleep. The main aim of this trial will be to determine whether prophylactic melatonin administered to critically ill adults, when compared with placebo, decreases the rate of delirium. Methods: This trial will be a multi-centre, randomised, placebo-controlled study conducted in closed ICUs in Australia. Our aim is to enrol 850 adult patients with an expected ICU length of stay (LOS) of 72h or more. Eligible patients for whom there is consent will be randomised to receive melatonin 4mg enterally or placebo in a 1:1 ratio according to a computer-generated randomisation list, stratified by site. The study drug will be indistinguishable from placebo. Patients, doctors, nurses, investigators and statisticians will be blinded. Melatonin or placebo will be administered once per day at 21:00 until ICU discharge or 14days after enrolment, whichever occurs first. Trained staff will assess patients twice daily to determine the presence or absence of delirium using the Confusion Assessment Method for the ICU score. Data will also be collected on demographics, the overall prevalence of delirium, duration and severity of delirium, sleep quality, participation in physiotherapy sessions, ICU and hospital LOS, morbidity and mortality, and healthcare costs. A subgroup of 100 patients will undergo polysomnographic testing to further evaluate the quality of sleep. Discussion: Delirium is a significant issue in ICU because of its frequency and associated poorer outcomes. This trial will be the largest evaluation of melatonin as a prophylactic agent to prevent delirium in the critically ill population. This study will also provide one of the largest series of polysomnographic testing done in ICU. Trial registration: Australian New Zealand Clinical Trial Registry (ANZCTR) number: ACTRN12616000436471. Registered on 20 December 2015

    Interlaboratory Comparison of Real-Time PCR Protocols for Quantification of General Fecal Indicator Bacteria

    No full text
    The application of quantitative real-time PCR (qPCR) technologies for the rapid identification of fecal bacteria in environmental waters is being considered for use as a national water quality metric in the United States. The transition from research tool to a standardized protocol requires information on the reproducibility and sources of variation associated with qPCR methodology across laboratories. This study examines interlaboratory variability in the measurement of enterococci and <i>Bacteroidales</i> concentrations from standardized, spiked, and environmental sources of DNA using the Entero1a and GenBac3 qPCR methods, respectively. Comparisons are based on data generated from eight different research facilities. Special attention was placed on the influence of the DNA isolation step and effect of simplex and multiplex amplification approaches on interlaboratory variability. Results suggest that a crude lysate is sufficient for DNA isolation unless environmental samples contain substances that can inhibit qPCR amplification. No appreciable difference was observed between simplex and multiplex amplification approaches. Overall, interlaboratory variability levels remained low (<10% coefficient of variation) regardless of qPCR protocol

    A systematic review of alcohol screening and assessment measures for young people

    Get PDF
    CITATION: Watson, R., et al. 2016. Proceedings of the 13th annual conference of INEBRIA. Addiction Science & Clinical Practice, 11:13, doi:10.1186/s13722-016-0062-9.The original publication is available at https://ascpjournal.biomedcentral.comENGLISH SUMMARY : Meeting abstracts.https://ascpjournal.biomedcentral.com/articles/10.1186/s13722-016-0062-9Publisher's versio

    Risk of COVID-19 after natural infection or vaccinationResearch in context

    No full text
    Summary: Background: While vaccines have established utility against COVID-19, phase 3 efficacy studies have generally not comprehensively evaluated protection provided by previous infection or hybrid immunity (previous infection plus vaccination). Individual patient data from US government-supported harmonized vaccine trials provide an unprecedented sample population to address this issue. We characterized the protective efficacy of previous SARS-CoV-2 infection and hybrid immunity against COVID-19 early in the pandemic over three-to six-month follow-up and compared with vaccine-associated protection. Methods: In this post-hoc cross-protocol analysis of the Moderna, AstraZeneca, Janssen, and Novavax COVID-19 vaccine clinical trials, we allocated participants into four groups based on previous-infection status at enrolment and treatment: no previous infection/placebo; previous infection/placebo; no previous infection/vaccine; and previous infection/vaccine. The main outcome was RT-PCR-confirmed COVID-19 >7–15 days (per original protocols) after final study injection. We calculated crude and adjusted efficacy measures. Findings: Previous infection/placebo participants had a 92% decreased risk of future COVID-19 compared to no previous infection/placebo participants (overall hazard ratio [HR] ratio: 0.08; 95% CI: 0.05–0.13). Among single-dose Janssen participants, hybrid immunity conferred greater protection than vaccine alone (HR: 0.03; 95% CI: 0.01–0.10). Too few infections were observed to draw statistical inferences comparing hybrid immunity to vaccine alone for other trials. Vaccination, previous infection, and hybrid immunity all provided near-complete protection against severe disease. Interpretation: Previous infection, any hybrid immunity, and two-dose vaccination all provided substantial protection against symptomatic and severe COVID-19 through the early Delta period. Thus, as a surrogate for natural infection, vaccination remains the safest approach to protection. Funding: National Institutes of Health
    corecore