2,963 research outputs found

    Asymmetries in the CMB anisotropy field

    Full text link
    We report on the results from two independent but complementary statistical analyses of the WMAP first-year data, based on the power spectrum and N-point correlation functions. We focus on large and intermediate scales (larger than about 3 degrees) and compare the observed data against Monte Carlo ensembles with WMAP-like properties. In both analyses, we measure the amplitudes of the large-scale fluctuations on opposing hemispheres and study the ratio of the two amplitudes. The power-spectrum analysis shows that this ratio for WMAP, as measured along the axis of maximum asymmetry, is high at the 95%-99% level (depending on the particular multipole range included). The axis of maximum asymmetry of the WMAP data is weakly dependent on the multipole range under consideration but tends to lie close to the ecliptic axis. In the N-point correlation function analysis we focus on the northern and southern hemispheres defined in ecliptic coordinates, and we find that the ratio of the large-scale fluctuation amplitudes is high at the 98%-99% level. Furthermore, the results are stable with respect to choice of Galactic cut and also with respect to frequency band. A similar asymmetry is found in the COBE-DMR map, and the axis of maximum asymmetry is close to the one found in the WMAP data.Comment: 6 pages, 5 figures; version to appear in ApJ, textual improvements, added reference

    Increasing evidence for hemispherical power asymmetry in the five-year WMAP data

    Get PDF
    (Abridged)Motivated by the recent results of Hansen et al. (2008) concerning a noticeable hemispherical power asymmetry in the WMAP data on small angular scales, we revisit the dipole modulated signal model introduced by Gordon et al. (2005). This model assumes that the true CMB signal consists of a Gaussian isotropic random field modulated by a dipole, and is characterized by an overall modulation amplitude, A, and a preferred direction, p. Previous analyses of this model has been restricted to very low resolution due to computational cost. In this paper, we double the angular resolution, and compute the full corresponding posterior distribution for the 5-year WMAP data. The results from our analysis are the following: The best-fit modulation amplitude for l <= 64 and the ILC data with the WMAP KQ85 sky cut is A=0.072 +/- 0.022, non-zero at 3.3sigma, and the preferred direction points toward Galactic coordinates (l,b) = (224 degree, -22 degree) +/- 24 degree. The corresponding results for l <~ 40 from earlier analyses was A = 0.11 +/- 0.04 and (l,b) = (225 degree,-27 degree). The statistical significance of a non-zero amplitude thus increases from 2.8sigma to 3.3sigma when increasing l_max from 40 to 64, and all results are consistent to within 1sigma. Similarly, the Bayesian log-evidence difference with respect to the isotropic model increases from Delta ln E = 1.8 to Delta ln E = 2.6, ranking as "strong evidence" on the Jeffreys' scale. The raw best-fit log-likelihood difference increases from Delta ln L = 6.1 to Delta ln L = 7.3. Similar, and often slightly stronger, results are found for other data combinations. Thus, we find that the evidence for a dipole power distribution in the WMAP data increases with l in the 5-year WMAP data set, in agreement with the reports of Hansen et al. (2008).Comment: 6 pages, 2 figures; added references and minor comments. Accepted for publication in Ap

    Harvest Regulations and Implementation Uncertainty in Small Game Harvest Management

    Get PDF
    A main challenge in harvest management is to set policies that maximize the probability that management goals are met. While the management cycle includes multiple sources of uncertainty, only some of these has received considerable attention. Currently, there is a large gap in our knowledge about implemention of harvest regulations, and to which extent indirect control methods such as harvest regulations are actually able to regulate harvest in accordance with intended management objectives. In this perspective article, we first summarize and discuss hunting regulations currently used in management of grouse species (Tetraonidae) in Europe and North America. Management models suggested for grouse are most often based on proportional harvest or threshold harvest principles. These models are all built on theoretical principles for sustainable harvesting, and provide in the end an estimate on a total allowable catch. However, implementation uncertainty is rarely examined in empirical or theoretical harvest studies, and few general findings have been reported. Nevertheless, circumstantial evidence suggest that many of the most popular regulations are acting depensatory so that harvest bag sizes is more limited in years (or areas) where game density is high, contrary to general recommendations. A better understanding of the implementation uncertainty related to harvest regulations is crucial in order to establish sustainable management systems. We suggest that scenario tools like Management System Evaluation (MSE) should be more frequently used to examine robustness of currently applied harvest regulations to such implementation uncertainty until more empirical evidence is available

    Scalable Group Level Probabilistic Sparse Factor Analysis

    Full text link
    Many data-driven approaches exist to extract neural representations of functional magnetic resonance imaging (fMRI) data, but most of them lack a proper probabilistic formulation. We propose a group level scalable probabilistic sparse factor analysis (psFA) allowing spatially sparse maps, component pruning using automatic relevance determination (ARD) and subject specific heteroscedastic spatial noise modeling. For task-based and resting state fMRI, we show that the sparsity constraint gives rise to components similar to those obtained by group independent component analysis. The noise modeling shows that noise is reduced in areas typically associated with activation by the experimental design. The psFA model identifies sparse components and the probabilistic setting provides a natural way to handle parameter uncertainties. The variational Bayesian framework easily extends to more complex noise models than the presently considered.Comment: 10 pages plus 5 pages appendix, Submitted to ICASSP 1

    Power Asymmetry in Cosmic Microwave Background Fluctuations from Full Sky to Sub-degree Scales: Is the Universe Isotropic?

    Get PDF
    We repeat and extend the analysis of Eriksen et al 2004 and Hansen et al 2004 testing the isotropy of the Cosmic Microwave Background (CMB) fluctuations. We find that the hemispherical power asymmetry previously reported for the largest scales l=2-40 extend to much smaller scales. In fact, for the full multipole range l=2-600, significantly more power is found in the hemisphere centered at (theta=107 deg., phi=226 deg.) in galactic co-latitude and longitude than in the opposite hemisphere consistent with the previously detected direction of asymmetry for l=2-40. We adopt a model selection test where the direction and amplitude of asymmetry as well as the multipole range are free parameters. A model with an asymmetric distribution of power for l=2-600 is found to be preferred over the isotropic model at the 0.4% significance level taking into account the additional parameters required to describe it. A similar direction of asymmetry is found independently in all six subranges of 100 multipoles between l=2-600 and none of our 9800 isotropic simulated maps show a similarly consistent direction of asymmetry over such a large multipole range. No known systematic effects or foregrounds are found to be able to explain the asymmetry.Comment: Submitted to Ap

    Probing local non-Gaussianities within a Bayesian framework

    Full text link
    Aims: We outline the Bayesian approach to inferring f_NL, the level of non-Gaussianity of local type. Phrasing f_NL inference in a Bayesian framework takes advantage of existing techniques to account for instrumental effects and foreground contamination in CMB data and takes into account uncertainties in the cosmological parameters in an unambiguous way. Methods: We derive closed form expressions for the joint posterior of f_NL and the reconstructed underlying curvature perturbation, Phi, and deduce the conditional probability densities for f_NL and Phi. Completing the inference problem amounts to finding the marginal density for f_NL. For realistic data sets the necessary integrations are intractable. We propose an exact Hamiltonian sampling algorithm to generate correlated samples from the f_NL posterior. For sufficiently high signal-to-noise ratios, we can exploit the assumption of weak non-Gaussianity to find a direct Monte Carlo technique to generate independent samples from the posterior distribution for f_NL. We illustrate our approach using a simplified toy model of CMB data for the simple case of a 1-D sky. Results: When applied to our toy problem, we find that, in the limit of high signal-to-noise, the sampling efficiency of the approximate algorithm outperforms that of Hamiltonian sampling by two orders of magnitude. When f_NL is not significantly constrained by the data, the more efficient, approximate algorithm biases the posterior density towards f_NL = 0.Comment: 11 pages, 7 figures. Accepted for publication in Astronomy and Astrophysic

    A re-analysis of the three-year WMAP temperature power spectrum and likelihood

    Get PDF
    We analyze the three-year WMAP temperature anisotropy data seeking to confirm the power spectrum and likelihoods published by the WMAP team. We apply five independent implementations of four algorithms to the power spectrum estimation and two implementations to the parameter estimation. Our single most important result is that we broadly confirm the WMAP power spectrum and analysis. Still, we do find two small but potentially important discrepancies: On large angular scales there is a small power excess in the WMAP spectrum (5-10% at l<~30) primarily due to likelihood approximation issues between 13 <= l <~30. On small angular scales there is a systematic difference between the V- and W-band spectra (few percent at l>~300). Recently, the latter discrepancy was explained by Huffenberger et al. (2006) in terms of over-subtraction of unresolved point sources. As far as the low-l bias is concerned, most parameters are affected by a few tenths of a sigma. The most important effect is seen in n_s. For the combination of WMAP, Acbar and BOOMERanG, the significance of n_s =/ 1 drops from ~2.7 sigma to ~2.3 sigma when correcting for this bias. We propose a few simple improvements to the low-l WMAP likelihood code, and introduce two important extensions to the Gibbs sampling method that allows for proper sampling of the low signal-to-noise regime. Finally, we make the products from the Gibbs sampling analysis publically available, thereby providing a fast and simple route to the exact likelihood without the need of expensive matrix inversions.Comment: 14 pages, 7 figures. Accepted for publication in ApJ. Numerical results unchanged, but interpretation sharpened: Likelihood approximation issues at l=13-30 far more important than potential foreground issues at l <= 12. Gibbs products (spectrum and sky samples, and "easy-to-use" likelihood module) available from http://www.astro.uio.no/~hke/ under "Research

    The Gluonic Field of a Heavy Quark in Conformal Field Theories at Strong Coupling

    Full text link
    We determine the gluonic field configuration sourced by a heavy quark undergoing arbitrary motion in N=4 super-Yang-Mills at strong coupling and large number of colors. More specifically, we compute the expectation value of the operator tr[F^2+...] in the presence of such a quark, by means of the AdS/CFT correspondence. Our results for this observable show that signals propagate without temporal broadening, just as was found for the expectation value of the energy density in recent work by Hatta et al. We attempt to shed some additional light on the origin of this feature, and propose a different interpretation for its physical significance. As an application of our general results, we examine when the quark undergoes oscillatory motion, uniform circular motion, and uniform acceleration. Via the AdS/CFT correspondence, all of our results are pertinent to any conformal field theory in 3+1 dimensions with a dual gravity formulation.Comment: 1+38 pages, 16 eps figures; v2: completed affiliation; v3: corrected typo, version to appear in JHE

    Accelerated sources in de Sitter spacetime and the insufficiency of retarded fields

    Get PDF
    The scalar and electromagnetic fields produced by the geodesic and uniformly accelerated discrete charges in de Sitter spacetime are constructed by employing the conformal relation between de Sitter and Minkowski space. A special attention is paid to new effects arising in spacetimes which, like de Sitter space, have spacelike conformal infinities. Under the presence of particle and event horizons, purely retarded fields (appropriately defined) become necessarily singular or even cannot be constructed at the "creation light cones" -- future light cones of the "points" at which the sources "enter" the universe. We construct smooth (outside the sources) fields involving both retarded and advanced effects, and analyze the fields in detail in case of (i) scalar monopoles, (ii) electromagnetic monopoles, and (iii) electromagnetic rigid and geodesic dipoles.Comment: 36 pages, 5 figures, LaTex2e; minor misprints corrected, one reference added and some terminology change

    Level densities and thermodynamical properties of Pt and Au isotopes

    Full text link
    The nuclear level densities of 194196^{194-196}Pt and 197,198^{197,198}Au below the neutron separation energy have been measured using transfer and scattering reactions. All the level density distributions follow the constant-temperature description. Each group of isotopes is characterized by the same temperature above the energy threshold corresponding to the breaking of the first Cooper pair. A constant entropy excess ΔS=1.9\Delta S=1.9 and 1.11.1 kBk_B is observed in 195^{195}Pt and 198^{198}Au with respect to 196^{196}Pt and 197^{197}Au, respectively, giving information on the available single-particle level space for the last unpaired valence neutron. The breaking of nucleon Cooper pairs is revealed by sequential peaks in the microcanonical caloric curve
    corecore