31 research outputs found

    TAB2 deletions and variants cause a highly recognisable syndrome with mitral valve disease, cardiomyopathy, short stature and hypermobility

    Get PDF
    Deletions that include the gene TAB2 and TAB2 loss-of-function variants have previously been associated with congenital heart defects and cardiomyopathy. However, other features, including short stature, facial dysmorphisms, connective tissue abnormalities and a variable degree of developmental delay, have only been mentioned occasionally in literature and thus far not linked to TAB2. In a large-scale, social media-based chromosome 6 study, we observed a shared phenotype in patients with a 6q25.1 deletion that includes TAB2. To confirm if this phenotype is caused by haploinsufficiency of TAB2 and to delineate a TAB2-related phenotype, we subsequently sequenced TAB2 in patients with matching phenotypes and recruited patients with pathogenic TAB2 variants detected by exome sequencing. This identified 11 patients with a deletion containing TAB2 (size 1.68-14.31 Mb) and 14 patients from six families with novel truncating TAB2 variants. Twenty (80%) patients had cardiac disease, often mitral valve defects and/or cardiomyopathy, 18 (72%) had short stature and 18 (72%) had hypermobility. Twenty patients (80%) had facial features suggestive for Noonan syndrome. No substantial phenotypic differences were noted between patients with deletions and those with intragenic variants. We then compared our patients to 45 patients from the literature. All literature patients had cardiac diseases, but syndromic features were reported infrequently. Our study shows that the phenotype in 6q25.1 deletions is caused by haploinsufficiency of TAB2 and that TAB2 is associated not just with cardiac disease, but also with a distinct phenotype, with features overlapping with Noonan syndrome. We propose the name "TAB2-related syndrome"

    Multiplex RNA-based detection of clinically relevant MET alterations in advanced non-small cell lung cancer

    Get PDF
    We studied MET alterations in 474 advanced non-small-cell lung cancer (NSCLC) patients by nCounter, an RNA-based technique. We identified 3% with MET Δex14 mRNA and 3.5% with very-high MET mRNA expression, a surrogate of MET amplification. MET alterations identified by nCounter correlated with clinical benefit from MET inhibitors. Quantitative mRNA-based techniques can improve the selection of patients for MET-targeted therapies. MET inhibitors have shown activity in non-small-cell lung cancer patients (NSCLC) with MET amplification and exon 14 skipping (METΔex14). However, patient stratification is imperfect, and thus, response rates have varied widely. Here, we studied MET alterations in 474 advanced NSCLC patients by nCounter, an RNA-based technique, together with next-generation sequencing (NGS), fluorescence in situ hybridization (FISH), immunohistochemistry (IHC), and reverse transcriptase polymerase chain reaction (RT-PCR), exploring correlation with clinical benefit. Of the 474 samples analyzed, 422 (89%) yielded valid results by nCounter, which identified 13 patients (3%) with MET Δex14 and 15 patients (3.5%) with very-high MET mRNA expression. These two subgroups were mutually exclusive, displayed distinct phenotypes and did not generally coexist with other drivers. For MET Δex14, 3/8 (37.5%) samples positive by nCounter tested negative by NGS. Regarding patients with very-high MET mRNA, 92% had MET amplification by FISH and/or NGS. However, FISH failed to identify three patients (30%) with very-high MET RNA expression, among which one received MET tyrosine kinase inhibitor treatment deriving clinical benefit. Our results indicate that quantitative mRNA-based techniques can improve the selection of patients for MET-targeted therapies

    Truncating SRCAP variants outside the Floating-Harbor syndrome locus cause a distinct neurodevelopmental disorder with a specific DNA methylation signature

    Get PDF
    Truncating variants in exons 33 and 34 of the SNF2-related CREBBP activator protein (SRCAP) gene cause the neurodevelopmental disorder (NDD) Floating-Harbor syndrome (FLHS), characterized by short stature, speech delay, and facial dysmorphism. Here, we present a cohort of 33 individuals with clinical features distinct from FLHS and truncating (mostly de novo) SRCAP variants either proximal (n = 28) or distal (n = 5) to the FLHS locus. Detailed clinical characterization of the proximal SRCAP individuals identified shared characteristics: developmental delay with or without intellectual disability, behavioral and psychiatric problems, non-specific facial features, musculoskeletal issues, and hypotonia. Because FLHS is known to be associated with a unique set of DNA methylation (DNAm) changes in blood, a DNAm signature, we investigated whether there was a distinct signature associated with our affected individuals. A machine-learning model, based on the FLHS DNAm signature, negatively classified all our tested subjects. Comparing proximal variants with typically developing controls, we identified a DNAm signature distinct from the FLHS signature. Based on the DNAm and clinical data, we refer to the condition as "non-FLHS SRCAP-related NDD.'' All five distal variants classified negatively using the FLHS DNAm model while two classified positively using the proximal model. This suggests divergent pathogenicity of these variants, though clinically the distal group presented with NDD, similar to the proximal SRCAP group. In summary, for SRCAP, there is a clear relationship between variant location, DNAm profile, and clinical phenotype. These results highlight the power of combined epigenetic, molecular, and clinical studies to identify and characterize genotype-epigenotype-phenotype correlations

    Comprehensive study of 28 individuals with SIN3A-related disorder underscoring the associated mild cognitive and distinctive facial phenotype

    Get PDF
    Witteveen-Kolk syndrome (OMIM 613406) is a recently defined neurodevelopmental syndrome caused by heterozygous loss-of-function variants in SIN3A. We define the clinical and neurodevelopmental phenotypes related to SIN3A-haploinsufficiency in 28 unreported patients. Patients with SIN3A variants adversely affecting protein function have mild intellectual disability, growth and feeding difficulties. Involvement of a multidisciplinary team including a geneticist, paediatrician and neurologist should be considered in managing these patients. Patients described here were identified through a combination of clinical evaluation and gene matching strategies (GeneMatcher and Decipher). All patients consented to participate in this study. Mean age of this cohort was 8.2 years (17 males, 11 females). Out of 16 patients ≥ 8 years old assessed, eight (50%) had mild intellectual disability (ID), four had moderate ID (22%), and one had severe ID (6%). Four (25%) did not have any cognitive impairment. Other neurological symptoms such as seizures (4/28) and hypotonia (12/28) were common. Behaviour problems were reported in a minority. In patients ≥2 years, three were diagnosed with Autism Spectrum Disorder (ASD) and four with Attention Deficit Hyperactivity Disorder (ADHD). We report 27 novel variants and one previously reported variant. 24 were truncating variants; three were missense variants and one large in-frame gain including exons 10–12

    Identification of genetic variants associated with Huntington's disease progression: a genome-wide association study

    Get PDF
    Background Huntington's disease is caused by a CAG repeat expansion in the huntingtin gene, HTT. Age at onset has been used as a quantitative phenotype in genetic analysis looking for Huntington's disease modifiers, but is hard to define and not always available. Therefore, we aimed to generate a novel measure of disease progression and to identify genetic markers associated with this progression measure. Methods We generated a progression score on the basis of principal component analysis of prospectively acquired longitudinal changes in motor, cognitive, and imaging measures in the 218 indivduals in the TRACK-HD cohort of Huntington's disease gene mutation carriers (data collected 2008–11). We generated a parallel progression score using data from 1773 previously genotyped participants from the European Huntington's Disease Network REGISTRY study of Huntington's disease mutation carriers (data collected 2003–13). We did a genome-wide association analyses in terms of progression for 216 TRACK-HD participants and 1773 REGISTRY participants, then a meta-analysis of these results was undertaken. Findings Longitudinal motor, cognitive, and imaging scores were correlated with each other in TRACK-HD participants, justifying use of a single, cross-domain measure of disease progression in both studies. The TRACK-HD and REGISTRY progression measures were correlated with each other (r=0·674), and with age at onset (TRACK-HD, r=0·315; REGISTRY, r=0·234). The meta-analysis of progression in TRACK-HD and REGISTRY gave a genome-wide significant signal (p=1·12 × 10−10) on chromosome 5 spanning three genes: MSH3, DHFR, and MTRNR2L2. The genes in this locus were associated with progression in TRACK-HD (MSH3 p=2·94 × 10−8 DHFR p=8·37 × 10−7 MTRNR2L2 p=2·15 × 10−9) and to a lesser extent in REGISTRY (MSH3 p=9·36 × 10−4 DHFR p=8·45 × 10−4 MTRNR2L2 p=1·20 × 10−3). The lead single nucleotide polymorphism (SNP) in TRACK-HD (rs557874766) was genome-wide significant in the meta-analysis (p=1·58 × 10−8), and encodes an aminoacid change (Pro67Ala) in MSH3. In TRACK-HD, each copy of the minor allele at this SNP was associated with a 0·4 units per year (95% CI 0·16–0·66) reduction in the rate of change of the Unified Huntington's Disease Rating Scale (UHDRS) Total Motor Score, and a reduction of 0·12 units per year (95% CI 0·06–0·18) in the rate of change of UHDRS Total Functional Capacity score. These associations remained significant after adjusting for age of onset. Interpretation The multidomain progression measure in TRACK-HD was associated with a functional variant that was genome-wide significant in our meta-analysis. The association in only 216 participants implies that the progression measure is a sensitive reflection of disease burden, that the effect size at this locus is large, or both. Knockout of Msh3 reduces somatic expansion in Huntington's disease mouse models, suggesting this mechanism as an area for future therapeutic investigation

    Low- versus High-Dose and Early versus Late Parenteral Amino-Acid Administration in Very-Low-Birth-Weight Infants: A Systematic Review and Meta-Analysis

    No full text
    Objectives: Providing parenteral amino acids to very-low-birth-weight infants during the first weeks of life is critical for adequate growth and neurodevelopment. However, there is no consensus about what dose is appropriate or when to initiate supplementation. As a result, daily practice varies among neonatal intensive care units. The objective of our study was to determine the effects of early parenteral amino-acid supplementation (within 24 h of birth) versus later initiation and high dose (>3.0 g/kg/day) versus a lower dose on growth and morbidities. Methods: A systematic review and meta-analysis of publications identified by searching PubMed, EMBASE, and Cochrane databases was conducted. Randomized controlled studies were eligible if information on growth was available. Results: The search identified 14 studies. No differences were observed in growth or morbidity after early or high-dose amino-acid supplementation, but for several outcomes, meta-analysis was not possible due to study heterogeneity. Initiation of amino acids within the first 24 h of life appeared to be safe and well tolerated, and leads more rapidly to a positive nitrogen balance. Conclusions: Administering a high dose (>3.0 g/kg/day) or an early dose (≤24 h) of parenteral amino acids is safe and well tolerated but does not offer significant benefits on growth. Further large-scale randomized controlled trials in preterm infants are needed to study the effects of early and high-dose amino acids on growth and morbidity more consistently and extensively

    Low- versus High-Dose and Early versus Late Parenteral Amino-Acid Administration in Very-Low-Birth-Weight Infants: A Systematic Review and Meta-Analysis

    No full text
    Objectives: Providing parenteral amino acids to very-low-birth-weight infants during the first weeks of life is critical for adequate growth and neurodevelopment. However, there is no consensus about what dose is appropriate or when to initiate supplementation. As a result, daily practice varies among neonatal intensive care units. The objective of our study was to determine the effects of early parenteral amino-acid supplementation (within 24 h of birth) versus later initiation and high dose (>3.0 g/kg/day) versus a lower dose on growth and morbidities. Methods: A systematic review and meta-analysis of publications identified by searching PubMed, EMBASE, and Cochrane databases was conducted. Randomized controlled studies were eligible if information on growth was available. Results: The search identified 14 studies. No differences were observed in growth or morbidity after early or high-dose amino-acid supplementation, but for several outcomes, meta-analysis was not possible due to study heterogeneity. Initiation of amino acids within the first 24 h of life appeared to be safe and well tolerated, and leads more rapidly to a positive nitrogen balance. Conclusions: Administering a high dose (>3.0 g/kg/day) or an early dose (≤24 h) of parenteral amino acids is safe and well tolerated but does not offer significant benefits on growth. Further large-scale randomized controlled trials in preterm infants are needed to study the effects of early and high-dose amino acids on growth and morbidity more consistently and extensively

    Patient engagement in the design of clinical research in Noonan syndrome spectrum disorders: a scoping review

    No full text
    Background: Noonan syndrome spectrum disorders are a group of disorders caused by mutations in several genes of the RAS/MAPK pathway. Because of a highly heterogeneity and variable phenotypical manifestations of the disorders, these children and adults have a variable number of symptoms. Inclusion of their perceived experience of their health and developmental problems in research (design) could contribute to increased relevance of the research process and outcomes. The aim of this study is to get insight in what way patients with a Noonan syndrome spectrum disorder have been involved in the research process in order to learn for future engagement practices. Methods and results: To that end, the degree of engagement was measured by the eight levels of the participation ladder of Arnstein. Using a scoping review approach, 18 articles were selected in which patient engagement in the design of studies in patients with Noonan syndrome spectrum disorders was described over the past twenty years. Six of these articles reported engagement on the level of informing (level 3), 8 on the level of consultation (level 4), 2 on the level of placation (level 5)and 2 on the level of partnership (level 6). Conclusions: The current results do show a positive albeit still modest development of patient engagement over the last few years. A promising way to stimulate engagement is aiming to yield insights in the most important patients’ needs by developing a patient guided research agenda. However, this is not automatically followed by patient engagement at higher levels of participation in subsequent research steps. For this reason, in the Netherlands for example, a Dutch Noonan syndrome spectrum disorders research agenda is being developed, in a collaboration between the Dutch Noonan Syndrome Foundation and national scientific and clinical professionals

    Lymphatic Phenotype of Noonan Syndrome: Innovative Diagnosis and Possible Implications for Therapy

    No full text
    Dysregulation of the Ras/Mitogen-activated protein kinase (MAPK) signaling pathway is suggested to play a pivotal role in the development of the lymphatic system in patients with Noonan Syndrome (NS). Pathogenic gene variants in the Ras/MAPK pathway can therefore lead to various lymphatic diseases such as lymphedema, chylo-thorax and protein losing enteropathy. Diagnosis and treatment of the lymphatic phenotype in patients with NS remain difficult due to the variability of clinical presentation, severity and, probably, underlying unknown pathophysiologic mechanism. The objective of this article is to give an overview of the clinical presentation of lymphatic disease in relation to central conducting lymphatic anomalies (CCLA) in NS, including new diagnostic and therapeutic options. We visualized the central conducting lymphatic system using heavily T2-weighted MR imaging (T2 imaging) and Dynamic Contrast-enhanced MR Lymphangiography (DCMRL) and compared these results with the lymphatic clinical presentation in seven patients with NS. Our results show that most patients with NS and lymphatic disease have CCLA. Therefore, it is probable that CCLA is present in all patient with NS, presenting merely with lymphedema, or without sensing lymphatic symptoms at all. T2 imaging and DCMRL can be indicated when CCLA is suspected and this can help to adjust therapeutic interventions

    Feeding Problems in Patients with Noonan Syndrome: A Narrative Review

    No full text
    Noonan syndrome (NS) belongs to the group of Noonan syndrome spectrum disorders (NSSD), which is a group of phenotypically related conditions. Feeding problems are often present not only in infancy but also in childhood, and even beyond that period. We describe the different aspects of feeding problems using a (theoretical) concept proposed in 2019. More than 50% of infants with NS develop feeding problems, and up to half of these infants will be tube-dependent for some time. Although, in general, there is a major improvement between the age of 1 and 2 years, with only a minority still having feeding problems after the age of 2 years, as long as the feeding problems continue, the impact on the quality of life of both NS infants and their caregivers may be significant. Feeding problems in general improve faster in children with a pathogenic PTPN11 or SOS1 variant. The mechanism of the feeding problems is complex, and may be due to medical causes (gastroesophageal reflux disease and delayed gastric emptying, cardiac disease and infections), feeding-skill dysfunction, nutritional dysfunction with increased energy demand, or primary or secondary psychosocial dysfunction. Many of the underlying mechanisms are still unknown. The treatment of the feeding problems may be a medical challenge, especially when the feeding problems are accompanied by feeding-skill dysfunction and psychosocial dysfunction. This warrants a multidisciplinary intervention including psychology, nutrition, medicine, speech language pathology and occupational therapy
    corecore