480 research outputs found

    Safety Program at the Nuclear Rocket Development Station

    Get PDF
    Many unique problems have been encountered and overcome in the developmental testing of nuclear powered engines for space applications, necessitating an extensive radiological and cryogenic safety program at the Nuclear Rocket Development Station. (NRDS) The radiological safety program directs itself toward the protection of personnel associated with the program and the public from direct radiation and resultant radioactive effluent. The cryogenics safety program at the NRDS directs itself to the prevention of accidents which could damage the nuclear reactor or the test facilities and in turn endanger associated personnel. It is graphically illustrated that nuclear rocket engines do not present a radiological safety problem prior to operation, and that during and following operation, experience has proven that control measures are possible to minimize possible hazards. Of particular interest is the comparison of cryogenic and radiological safety effects

    Emergency Medicine Provider Impressions of Novel SMS-Based Toxicology Module

    Get PDF
    The diagnosis and treatment of common toxicologic disorders is an area of core content that emergency medicine (EM) resident physicians and physician assistants (PA) are required to demonstrate competence in order to become proficient practicing clinicians. Even when EM programs have a required toxicology elective, learners do not encounter all core toxicologic presentations. To supplement these knowledge gaps, many toxicology curriculums rely on internet learning modules which have variable uptake in practice. With remote learning and education becoming more common, we aim to perform a need-based assessment of EM resident and PA toxicology education and use the results to develop and deploy a text message-based, interactive toxicology supplemental program for EM residents and PAs and measure its acceptability and preliminary effectiveness to teach core toxicology principles

    Analysis of 39 drugs and metabolites, including 8 glucuronide conjugates, in an upstream wastewater network via HPLC-MS/MS

    Get PDF
    © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Foppe, K. S., Kujawinski, E. B., Duvallet, C., Endo, N., Erickson, T. B., Chai, P. R., & Matus, M. Analysis of 39 drugs and metabolites, including 8 glucuronide conjugates, in an upstream wastewater network via HPLC-MS/MS. Journal of Chromatography B, 1176, (2021): 122747, https://doi.org/10.1016/j.jchromb.2021.122747.Pharmaceutical compounds ingested by humans are metabolized and excreted in urine and feces. These metabolites can be quantified in wastewater networks using wastewater-based epidemiology (WBE) methods. Standard WBE methods focus on samples collected at wastewater treatment plants (WWTPs). However, these methods do not capture more labile classes of metabolites such as glucuronide conjugates, products of the major phase II metabolic pathway for drug elimination. By shifting sample collection more upstream, these unambiguous markers of human exposure are captured before hydrolysis in the wastewater network. In this paper, we present an HPLC-MS/MS method that quantifies 8 glucuronide conjugates in addition to 31 parent and other metabolites of prescription and synthetic opioids, overdose treatment drugs, illicit drugs, and population markers. Calibration curves for all analytes are linear (r2 > 0.98), except THC (r2 = 0.97), and in the targeted range (0.1–1,000 ng mL−1) with lower limits of quantification (S/N = 9) ranging from 0.098 to 48.75 ng mL−1. This method is fast with an injection-to-injection time of 7.5 min. We demonstrate the application of the method to five wastewater samples collected from a manhole in a city in eastern Massachusetts. Collected wastewater samples were filtered and extracted via solid-phase extraction (SPE). The SPE cartridges are eluted and concentrated in the laboratory via nitrogen-drying. The method and case study presented here demonstrate the potential and application of expanding WBE to monitoring labile metabolites in upstream wastewaterThis work was supported by the National Institute on Drug Abuse of the National Institutes of Health award number R44DA051106 to MM and PC. TE, PC and MM are funded by research grants from the Massachusetts Consortium on Pathogen Readiness and NIH R44DA051106. PRC is funded by NIH K23DA044874, independent research grants from e-ink corporation and Hans and Mavis Lopater Psychosocial Foundation

    Calculation of the Electron Self Energy for Low Nuclear Charge

    Get PDF
    We present a nonperturbative numerical evaluation of the one-photon electron self energy for hydrogenlike ions with low nuclear charge numbers Z=1 to 5. Our calculation for the 1S state has a numerical uncertainty of 0.8 Hz for hydrogen and 13 Hz for singly-ionized helium. Resummation and convergence acceleration techniques that reduce the computer time by about three orders of magnitude were employed in the calculation. The numerical results are compared to results based on known terms in the expansion of the self energy in powers of (Z alpha).Comment: 10 pages, RevTeX, 2 figure

    Electron Self Energy for the K and L Shell at Low Nuclear Charge

    Get PDF
    A nonperturbative numerical evaluation of the one-photon electron self energy for the K- and L-shell states of hydrogenlike ions with nuclear charge numbers Z=1 to 5 is described. Our calculation for the 1S state has a numerical uncertainty of 0.8 Hz in atomic hydrogen, and for the L-shell states (2S and 2P) the numerical uncertainty is 1.0 Hz. The method of evaluation for the ground state and for the excited states is described in detail. The numerical results are compared to results based on known terms in the expansion of the self energy in powers of (Z alpha).Comment: 21 pages, RevTeX, 5 Tables, 6 figure

    Training of Instrumentalists and Development of New Technologies on SOFIA

    Full text link
    This white paper is submitted to the Astronomy and Astrophysics 2010 Decadal Survey (Astro2010)1 Committee on the State of the Profession to emphasize the potential of the Stratospheric Observatory for Infrared Astronomy (SOFIA) to contribute to the training of instrumentalists and observers, and to related technology developments. This potential goes beyond the primary mission of SOFIA, which is to carry out unique, high priority astronomical research. SOFIA is a Boeing 747SP aircraft with a 2.5 meter telescope. It will enable astronomical observations anywhere, any time, and at most wavelengths between 0.3 microns and 1.6 mm not accessible from ground-based observatories. These attributes, accruing from the mobility and flight altitude of SOFIA, guarantee a wealth of scientific return. Its instrument teams (nine in the first generation) and guest investigators will do suborbital astronomy in a shirt-sleeve environment. The project will invest $10M per year in science instrument development over a lifetime of 20 years. This, frequent flight opportunities, and operation that enables rapid changes of science instruments and hands-on in-flight access to the instruments, assure a unique and extensive potential - both for training young instrumentalists and for encouraging and deploying nascent technologies. Novel instruments covering optical, infrared, and submillimeter bands can be developed for and tested on SOFIA by their developers (including apprentices) for their own observations and for those of guest observers, to validate technologies and maximize observational effectiveness.Comment: 10 pages, no figures, White Paper for Astro 2010 Survey Committee on State of the Professio

    A social-ecological-technological systems framework for urban ecosystem services

    Get PDF
    As rates of urbanization and climatic change soar, decision-makers are increasingly challenged to provide innovative solutions that simultaneously address climate change impacts and risks and inclusively ensure quality of life for urban residents. Cities have turned to nature-based solutions to help address these challenges. Nature-based solutions, through the provision of ecosystem services, can yield numerous benefits for people and address multiple challenges simultaneously. Yet, efforts to mainstream nature-based solutions are impaired by the complexity of the interacting social, ecological, and technological dimensions of urban systems. This complexity must be understood and managed to ensure ecosystem-service provisioning is effective, equitable, and resilient. Here, we provide a social-ecological-technological system (SETS) framework that builds on decades of urban ecosystem services research to better understand four core challenges associated with urban nature-based solutions: multi-functionality, systemic valuation, scale mismatch of ecosystem services, and inequity and injustice. The framework illustrates the importance of coordinating natural, technological, and socio-economic systems when designing, planning, and managing urban nature-based solutions to enable optimal social-ecological outcomes

    The Impact of Weapons and Unusual Objects on the Construction of Facial Composites

    Get PDF
    The presence of a weapon in the perpetration of a crime can impede an observer’s ability to describe and/or recognise the person responsible. In the current experiment, we explore whether weapons when present at encoding of a target identity interfere with construction of a facial composite. Participants encoded an unfamiliar target face seen either on its own or paired with a knife. Encoding duration (10 or 30 seconds) was also manipulated. The following day, participants recalled the face and constructed a composite of it using a holistic system (EvoFIT). Correct naming of the participants’ composites was found to reduce reliably when target faces were paired with the weapon at 10 seconds but not at 30 seconds. These data suggest that the presence of a weapon reduces the effectiveness of facial composites following short encoding duration. Implications for theory and police practice are discussed

    A social-ecological-technological systems framework for urban ecosystem services

    Get PDF
    As rates of urbanization and climatic change soar, decision-makers are increasingly challenged to provide innovative solutions that simultaneously address climate-change impacts and risks and inclusively ensure quality of life for urban residents. Cities have turned to nature-based solutions to help address these challenges. Nature-based solutions, through the provision of ecosystem services, can yield numerous benefits for people and address multiple challenges simultaneously. Yet, efforts to mainstream nature-based solutions are impaired by the complexity of the interacting social, ecological, and technological dimensions of urban systems. This complexity must be understood and managed to ensure ecosystem-service provisioning is effective, equitable, and resilient. Here, we provide a social-ecological-technological system (SETS) framework that builds on decades of urban ecosystem services research to better understand four core challenges associated with urban nature-based solutions: multi-functionality, systemic valuation, scale mismatch of ecosystem services, and inequity and injustice. The framework illustrates the importance of coordinating natural, technological, and socio-economic systems when designing, planning, and managing urban nature-based solutions to enable optimal social-ecological outcomes
    • 

    corecore