7 research outputs found

    Innate Immune Responses to Bacterial Ligands in the Peripheral Human Lung – Role of Alveolar Epithelial TLR Expression and Signalling

    Get PDF
    It is widely believed that the alveolar epithelium is unresponsive to LPS, in the absence of serum, due to low expression of TLR4 and CD14. Furthermore, the responsiveness of the epithelium to TLR-2 ligands is also poorly understood. We hypothesised that human alveolar type I (ATI) and type II (ATII) epithelial cells were responsive to TLR2 and TLR4 ligands (MALP-2 and LPS respectively), expressed the necessary TLRs and co-receptors (CD14 and MD2) and released distinct profiles of cytokines via differential activation of MAP kinases. Primary ATII cells and alveolar macrophages and an immortalised ATI cell line (TT1) elicited CD14 and MD2-dependent responses to LPS which did not require the addition of exogenous soluble CD14. TT1 and primary ATII cells expressed CD14 whereas A549 cells did not, as confirmed by flow cytometry. Following LPS and MALP-2 exposure, macrophages and ATII cells released significant amounts of TNFα, IL-8 and MCP-1 whereas TT1 cells only released IL-8 and MCP-1. P38, ERK and JNK were involved in MALP-2 and LPS-induced cytokine release from all three cell types. However, ERK and JNK were significantly more important than p38 in cytokine release from macrophages whereas all three were similarly involved in LPS-induced mediator release from TT1 cells. In ATII cells, JNK was significantly more important than p38 and ERK in LPS-induced MCP-1 release. MALP-2 and LPS exposure stimulated TLR4 protein expression in all three cell types; significantly more so in ATII cells than macrophages and TT1 cells. In conclusion, this is the first study describing the expression of CD14 on, and TLR2 and 4 signalling in, primary human ATII cells and ATI cells; suggesting that differential activation of MAP kinases, cytokine secretion and TLR4 expression by the alveolar epithelium and macrophages is important in orchestrating a co-ordinated response to inhaled pathogens

    Excited state dynamics of Photoactive Yellow Protein chromophores elucidated by high-resolution spectroscopy and ab initio calculations

    Get PDF
    We report on experimental high-resolution spectroscopic studies in combination with advanced theoretical calculations that focus on the excited-state dynamics of various forms of the chromophore of the Photoactive Yellow Protein (PYP), and the dependence of these dynamics on conformational and isosteric structure, as well as the biological environment. Three-colour nanosecond multiphoton ionization pump-probe studies confirm and extend previous conclusions that the dominant decay channel of the lowest excited pi pi* state (the so-called V' state) of methyl-4-hydroxycinnamate is picosecond internal conversion to the adiabatically lower n pi* state, and enable us to resolve apparent contradictions with picosecond pump-probe studies. Comparison of multiphoton ionization and laser induced fluorescence excitation spectra leads to the assignment of the hitherto elusive excitation spectrum of the V(pp*) state. Complexation of methyl-4-hydroxycinnamate with water radically changes the excited-state dynamics; internal conversion to the np* state is absent, and bond isomerization channels instead play a prominent role. Excited states of the thio-ester compound, the form in which the chromophore is present in PYP, have till the present study remained out of reach of gas-phase studies. The excitation spectra obtained here show a broad, almost structureless band system, giving evidence for enhanced nonradiative decay channels. The gas-phase results will be discussed in the context of results from ultrafast studies on these two chromophores in solution

    Poor data and outdated methods sabotage the decarbonization efforts of the chemical industry

    No full text
    High-quality data is a prerequisite for the sustainability assessment of chemicals. However, the most prevalent databases currently contain either intransparent aggregated data (impeding quality checks) or, in absence of measured data, rely on widespread use of proxy data for key inventory flows. This study analyzes the quality and implications of proxy data use for filling data gaps in the chemical sector of the ecoinvent database, the most commonly used database, that has found a broad range of applications in politics, industry and science. The individual datasets in that database are compared against simulation-based data as well as commercial chemical-sector data. The propagation of the proxy data in ecoinvent is traced along the complex chemical sector supply chains and consequences for carbon footprints and life cycle assessment (LCA) are calculated. The results demonstrate that due to the use of inappropriate proxy data, the heat demand of chemicals production is heavily underestimated, while the electricity demands tend to be overestimated. Environmental impacts such as the climate change impacts of the chemical sector are largely determined by heat demands, resulting in a massive 44% underestimation of climate change impacts of chemical production in ecoinvent in comparison to simulation-based data. Hence, the quality of chemical data does not live up to the importance of the topic of sustainable chemistry and may lead to widespread erroneous conclusions of policy-makers and industries. To allow for robust environmental assessments of chemicals and to provide reliable decision support, more attention needs to be paid to appropriate data collection of key inventory flows. It is therefore necessary that the use of unspecific proxy data in key data sources is reduced to an absolute minimum and that specific industry data is used whenever possible. Such data is partly available, but needs updates and expansions. Better proxy approaches than the existing ones can also contribute to a more precise picture of environmental impacts from the chemicals sector, but these approaches should only represent a last resort for processes and products without any alternatives

    Galactic cosmic ray simulation at the NASA Space Radiation Laboratory

    No full text
    Most accelerator-based space radiation experiments have been performed with single ion beams at fixed energies. However, the space radiation environment consists of a wide variety of ion species with a continuous range of energies. Due to recent developments in beam switching technology implemented at the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory (BNL), it is now possible to rapidly switch ion species and energies, allowing for the possibility to more realistically simulate the actual radiation environment found in space. The present paper discusses a variety of issues related to implementation of galactic cosmic ray (GCR) simulation at NSRL, especially for experiments in radiobiology. Advantages and disadvantages of different approaches to developing a GCR simulator are presented. In addition, issues common to both GCR simulation and single beam experiments are compared to issues unique to GCR simulation studies. A set of conclusions is presented as well as a discussion of the technical implementation of GCR simulation

    The Need for Increased Transparency and Public Scrutiny in the World of Congressional Campaign Voter Data Collection

    No full text
    corecore