134 research outputs found

    Extending displacement-based earthquake loss assessment (DBELA) for the computation of fragility curves

    Get PDF
    This paper presents a new procedure to derive fragility functions for populations of buildings that relies on the displacement-based earthquake loss assessment (DBELA) methodology. In the method proposed herein, thousands of synthetic buildings have been produced considering the probabilistic distribution describing the variability in geometrical and material properties. Then, their nonlinear capacity has been estimated using the DBELA method and their response against a large set of ground motion records has been estimated. Global limit states are used to estimate the distribution of buildings in each damage state for different levels of ground motion, and a regression algorithm is applied to derive fragility functions for each limit state. The proposed methodology is demonstrated for the case of ductile and non-ductile Turkish reinforced concrete frames with masonry infills

    Direct damage controlled seismic design of plane steel degrading frames

    Get PDF
    A new method for seismic design of plane steel moment resisting framed structures is developed. This method is able to control damage at all levels of performance in a direct manner. More specifically, the method: (a) can determine damage in any member or the whole of a designed structure under any given seismic load, (b) can dimension a structure for a given seismic load and desired level of damage and (c) can determine the maximum seismic load a designed structure can sustain in order to exhibit a desired level of damage. In order to accomplish these things, an appropriate seismic damage index is used that takes into account the interaction between axial force and bending moment at a section, strength and stiffness degradation as well as low cycle fatigue. Then, damage scales are constructed on the basis of extensive parametric studies involving a large number of frames exhibiting cyclic strength and stiffness degradation and a large number of seismic motions and using the above damage index for damage determination. Some numerical examples are presented to illustrate the proposed method and demonstrate its advantages against other methods of seismic design. © 2014, Springer Science+Business Media Dordrecht

    Seismic Vulnerability of Flat-Slab Structures

    Get PDF
    The study has three main objectives. The first objective is to investigate the fragility of flat-slab reinforced concrete systems. Developing the fragility information of flat-slab construction will be a novel achievement since the issue has not been the concern of any research in the literature. The second objective is to assess HAZUS as an open-source, nationally accepted earthquake loss estimation software environment. It is important to understand the potentials and the limitations of the methodology, the relationship between the hazard, damage and the loss modules, and the plausibility of the results before using it for the purposes of hazard mitigation, preparedness or recovery. The last objective is to implement the fragility information obtained for the flat-slab structural system into HAZUS. The methodology involves many built-in specific building types, but does not include flat-slab structures. Hence it will be extra achievement to develop HAZUScompatible fragility curves to be used within the methodology.National Science Foundation EEC-970178

    Estimation of Potential Seismic Damage in Urban Areas

    No full text
    Large earthquakes are known to have significant damage potential in urban regions. Recently all over the world, efforts are made toward reduction of future probable damages. The first step in damage mitigation is the estimation of expected damage levels in buildings that are subjected to earthquakes with different intensities. Due to the inherent uncertainties involved in the analyses, estimation of seismic damage rates must be handled within a probabilistic framework. To assess the damage rates under different shaking levels, “seismic damage” needs to be quantified and measured in a standard manner. The most common approach to quantify seismic damage rates is to perform fragility analyses. Fragility is defined as the probability of a system reaching a limit state as a function of seismic intensity levels..

    Generation of fragility curves for Turkish masonry buildings considering in-plane failure modes

    No full text
    This study focuses on the seismic safety evaluation of masonry buildings in Turkey for in-plane failure modes using fragility curves. Masonry buildings are classified and a set of fragility curves are generated for each class. The major structural parameters in the classification of masonry buildings are considered as the number of stories, load-bearing wall material, regularity in plan and the arrangement of walls (required length, openings in walls, etc.), in accordance with the observations from previous earthquakes and field databases. The fragility curves are generated by using time history (for demand) and pushover (for capacity) analyses. From the generated sets of fragility curves, it is observed that the damage state probabilities are significantly influenced from the number of stories and wall material strength. In the second stage of the study, the generated fragility curves are employed to estimate the damage of masonry buildings in Dinar after the 1995 earthquake. The estimated damage by fragility information is compared with the inspected visual damage as assessed from the Damage Evaluation Form. For the quantification of fragility-based damage, a single-valued index, named as 'vulnerability score' (VS), is proposed. There seems to be a fair agreement between the two damage measures. In addition to this, decisions regarding the repair or demolition of masonry buildings in Dinar due to visual damage inspection are on comparable grounds with the relative measure obtained from VS of the same buildings. Hence, the fragility-based procedure can provide an alternative for the seismic safety evaluation of masonry buildings in Turkey. Copyright (C) 2007 John Wiley & Sons, Ltd

    Importance of Degrading Behavior for Seismic Performance Evaluation of Simple Structural Systems

    No full text
    This study focuses on effect of degradation characteristics on seismic performance of simple structural systems. Equivalent single degree of freedom systems are used for which the structural characteristics are taken from existing reinforced concrete (RC) frame buildings. Simulation of degrading behavior is achieved by considering actual experimental data. To obtain the seismic response of degrading structural systems, two different approaches are used: inelastic spectral analysis and fragility analysis. According to the results obtained from both approaches, degrading behavior is dominant for mid-rise RC frame buildings as it significantly amplifies seismic demand. Hence, in performance-based assessment approaches, analytical modeling of such degrading structures should be carried out carefully

    Influence of earthquake ground motion characteristics on structural damage and seismic response reduction

    No full text
    • 

    corecore