49 research outputs found

    Arraying nonmagnetic colloids by magnetic nanoparticle assemblers

    Get PDF
    IEEE Transactions On Magnetics, 42(10): pp. 3548-3553.We review our recent work on the manipulation and assembly of nonmagnetic colloidal materials above magnetically programmable surface templates. The nonmagnetic materials are manipulated by a fluid dispersion of magnetic nanoparticles, known as ferrofluid. Particle motion is guided by a program of magnetic information stored in a substrate in the form of a lithographically patterned template of micromagnets. We show how dynamic control over the motion of nonmagnetic particles can be accomplished by applying rotating external magnetic field. This unexpectedly large degree of control over particle motion can be used to manipulate large ensembles of particles in parallel, potentially with local control over particle trajectory

    Identification and distribution of neuronal nitric oxide synthase and neurochemical markers in the neuroepithelial cells of the gill and the skin in the giant mudskipper, Periophthalmodon schlosseri

    Get PDF
    Mudskippers are amphibious fishes living in mudflats and mangroves. These fishes hold air in their large buccopharyngeal-opercular cavities where respiratory gas exchange takes place via the gills and higher vascularized epithelium lining the cavities and also the skin epidermis. Although aerial ventilation response to changes in ambient gas concentration has been studied in mudskippers, the localization and distribution of respiratory chemoreceptors, their neurochemical coding and function as well as physiological evidence for the gill or skin as site for O2 and CO2 sensing are currently not known. In the present study we assessed the distribution of serotonin, acetylcholine, catecholamines and nitric oxide in the neuroepithelial cells (NECs) of the mudskipper gill and skin epithelium using immunohistochemistry and confocal microscopy. Colocalization studies showed that 5-HT is coexpressed with nNOS, Na+/K+-ATPase, TH and VAChT; nNOS is coexpressed with Na+/K+-ATPase and TH in the skin. In the gill 5-HT is coexpressed with nNOS and VAhHT and nNOS is coexpressed with Na+/K+-ATPase and TH. Acetylcholine is also expressed in chain and proximal neurons projecting to the efferent filament artery and branchial smooth muscle. The serotonergic cells c labeled with VAChT, nNOS and TH, thus indicating the presence of NEC populations and the possibility that these neurotransmitters (other than serotonin) may act as primary transmitters in the hypoxic reflex in fish gills. Immunolabeling with TH antibodies revealed that NECs in the gill and the skin are innervated by catecholaminergic nerves, thus suggesting that these cells are involved in a central control of branchial functions through their relationships with the sympathetic branchial nervous system. The Na+/K+-ATPase in mitochondria-rich cells (MRCs), which are most concentrated in the gill lamellar epithelium, is colabeled with nNOS and associated with TH nerve terminals. TH-immunopositive fine varicosities were also associated with the numerous capillaries in the skin surface and the layers of the swollen cells. Based on the often hypercapnic and hypoxic habitat of the mudskippers, these fishes may represent an attractive model for pursuing studies on O2 and CO2 sensing due to the air-breathing that increases the importance of acid/base regulation and the O2-related drive including the function of gasotransmitters such as nitric oxide that has an inhibitory (regulatory) function in ionoregulation.This research was supported by project PAN LAB PONA3_00166. The authors would like to thank MichaƂ Ignaszewski (TDT) for his kind help in statistical analysis

    Enhanced diffusion and magnetophoresis of paramagnetic colloidal particles in rotating magnetic fields

    No full text
    This journal is © The Royal Society of Chemistry. Dispersions of paramagnetic colloids can be manipulated with external magnetic fields to assemble structures via dipolar assembly and control transport via magnetophoresis. For fields held steady in time, the dispersion structure and dynamic properties are coupled. This coupling can be problematic when designing processes involving field-induced forces, as particle aggregation competes against and hinders particle transport. Time-varying fields drive dispersions out-of-equilibrium, allowing the structure and dynamics to be tuned independently. Rotating the magnetic field direction using two biaxial fields is a particularly effective mode of time-variation and has been used experimentally to enhance particle transport. Fundamental transport properties, like the diffusivity and magnetophoretic mobility, dictate dispersions' out-of-equilibrium responses to such time-varying fields, and are therefore crucial to understand to effectively design processes utilizing rotating fields. However, a systematic study of these dynamic quantities in rotating fields has not been performed. Here, we investigate the transport properties of dispersions of paramagnetic colloids in rotating magnetic fields using dynamic simulations. We find that self-diffusion of particles is enhanced in rotating fields compared to steady fields, and that the self-diffusivity in the plane of rotation reaches a maximum value at intermediate rotation frequencies that is larger than the Stokes-Einstein diffusivity of an isolated particle. We also show that, while the magnetophoretic velocity of particles through the bulk in a field gradient decreases with increasing rotation frequency, the enhanced in-plane diffusion allows for faster magnetophoretic transport through porous materials in rotating fields. We examine the effect of porous confinement on the transport properties in rotating fields and find enhanced diffusion at all pore sizes. The confined and bulk values of the transport properties are leveraged in simple models of magnetophoresis through tortuous porous media

    Mechanics of Platelet-Reinforced Composites Assembled Using Mechanical and Magnetic Stimuli

    No full text
    Current fabrication technologies of structural composites based on the infiltration of fiber weaves with a polymeric resin offer good control over the orientation of long reinforcing fibers but remain too cumbersome and slow to enable cost-effective manufacturing. The development of processing routes that allow for fine control of the reinforcement orientation and that are also compatible with fast polymer processing technologies remains a major challenge. In this paper, we show that bulk platelet-reinforced composites with tailored reinforcement architectures and mechanical properties can be fabricated through the directed-assembly of inorganic platelets using combined magnetic and mechanical stimuli. The mechanical performance and fracture behavior of the resulting composites under compression and bending can be deliberately tuned by assembling the platelets into designed microstructures. By combining high alignment degree and volume fractions of reinforcement up to 27 vol %, we fabricated platelet-reinforced composites that can potentially be made with cost-effective polymer processing routes while still exhibiting properties that are comparable to those of state-of-the-art glass-fiber composites

    Injectable Materials with Magnetically Controlled Anisotropic Porosity

    No full text
    We propose a method to create aligned porosity in injectable materials by using magnetically responsive microrods as pore forming sacrificial templates. Rod alignment occurs through the application of an external magnetic field after injecting the material into the desired end location. Removal of the sacrificial templates through dissolution or resorption generates porosity in deliberately tuned orientations after injection, offering a powerful method to design the porous architecture of injectable materials
    corecore