22 research outputs found

    A roadmap to integrate astrocytes into Systems Neuroscience.

    Get PDF
    Systems neuroscience is still mainly a neuronal field, despite the plethora of evidence supporting the fact that astrocytes modulate local neural circuits, networks, and complex behaviors. In this article, we sought to identify which types of studies are necessary to establish whether astrocytes, beyond their well-documented homeostatic and metabolic functions, perform computations implementing mathematical algorithms that sub-serve coding and higher-brain functions. First, we reviewed Systems-like studies that include astrocytes in order to identify computational operations that these cells may perform, using Ca2+ transients as their encoding language. The analysis suggests that astrocytes may carry out canonical computations in a time scale of subseconds to seconds in sensory processing, neuromodulation, brain state, memory formation, fear, and complex homeostatic reflexes. Next, we propose a list of actions to gain insight into the outstanding question of which variables are encoded by such computations. The application of statistical analyses based on machine learning, such as dimensionality reduction and decoding in the context of complex behaviors, combined with connectomics of astrocyte-neuronal circuits, is, in our view, fundamental undertakings. We also discuss technical and analytical approaches to study neuronal and astrocytic populations simultaneously, and the inclusion of astrocytes in advanced modeling of neural circuits, as well as in theories currently under exploration such as predictive coding and energy-efficient coding. Clarifying the relationship between astrocytic Ca2+ and brain coding may represent a leap forward toward novel approaches in the study of astrocytes in health and disease

    GSEA of mouse and human mitochondriomes reveals fatty acid oxidation in astrocytes

    Get PDF
    The prevalent view in neuroenergetics is that glucose is the main brain fuel, with neurons being mostly oxidative and astrocytes glycolytic. Evidence supporting that astrocyte mitochondria are functional has been overlooked. Here we sought to determine what is unique about astrocyte mitochondria by performing unbiased statistical comparisons of the mitochondriome in astrocytes and neurons. Using MitoCarta, a compendium of mitochondrial proteins, together with transcriptomes of mouse neurons and astrocytes, we generated cell-specific databases of nuclear genes encoding for mitochondrion proteins, ranked according to relative expression. Standard and in-house Gene Set Enrichment Analyses (GSEA) of five mouse transcriptomes revealed that genes encoding for enzymes involved in fatty acid oxidation (FAO) and amino acid catabolism are consistently more expressed in astrocytes than in neurons. FAO and oxidative-metabolism-related genes are also up-regulated in human cortical astrocytesversus the whole cortex, and in adult astrocytes versus fetal astrocytes. We thus present the first evidence of FAO in human astrocytes. Further, as shown in vitro, FAO coexists with glycolysis in astrocytes and is inhibited by glutamate. Altogether, these analyses provide arguments against the glucose-centered view of energy metabolism in astrocytes and reveal mitochondria as specialized organelles in these cells

    CREB Regulates Distinct Adaptive Transcriptional Programs in Astrocytes and Neurons

    Get PDF
    The cyclic AMP response element binding protein (CREB) is a primary hub of a activity-driven genetic programs in neurons controlling plasticity, neurogenesis and survival. By contrast, the gene networks coordinated by CREB in astrocytes are Unknown despite the fact that the astrocytic CREB is a also activity-driven and neuroprotective. Herein we identified the transcriptional programs regulated by CREB in astrocytes as compared to neurons using, as study materials, transcriptome databases of astrocyte exposed to weII-known activators of CREB-dependent transcription as well as publidy available transcriptomes of neuronal cultures. Functional CREB signatures were extracted from the transcriptomes using Gene Ontology, adult-brain gene lists generated by Translating Ribosome Affinity Purification (TRAP) and CREB-target gene repositories. We found minimal overlap between CREB signatures in astrocytes and neurons. In astrocytes, the top triad of functions regulated by CREB consists of'Gene expression', 'Mitochondria', and 'Signa Iling', while in neurons it is 'Neurotransmission', 'Signalling' and 'Gene expression', the latter being represented by different genes from those in astrocytes. The newly gene rated data bases Will provide a tool to explore novel means whereby CREB impinges on brain functions requiring adaptive, long-lasting changes by coordinating transcriptionaI cascades in astrocytes

    CREB decreases astrocytic excitability by modifying subcellular calcium fluxes via the sigma-1 receptor

    Get PDF
    Altres ajuts: La Marató de TV3 (TV3-20141430)Astrocytic excitability relies on cytosolic calcium increases as a key mechanism, whereby astrocytes contribute to synaptic transmission and hence learning and memory. While it is a cornerstone of neurosciences that experiences are remembered, because transmitters activate gene expression in neurons, long-term adaptive astrocyte plasticity has not been described. Here, we investigated whether the transcription factor CREB mediates adaptive plasticity-like phenomena in astrocytes. We found that activation of CREB-dependent transcription reduced the calcium responses induced by ATP, noradrenaline, or endothelin-1. As to the mechanism, expression of VP16-CREB, a constitutively active CREB mutant, had no effect on basal cytosolic calcium levels, extracellular calcium entry, or calcium mobilization from lysosomal-related acidic stores. Rather, VP16-CREB upregulated sigma-1 receptor expression thereby increasing the release of calcium from the endoplasmic reticulum and its uptake by mitochondria. Sigma-1 receptor was also upregulated in vivo upon VP16-CREB expression in astrocytes. We conclude that CREB decreases astrocyte responsiveness by increasing calcium signalling at the endoplasmic reticulum-mitochondria interface, which might be an astrocyte-based form of long-term depression

    Defined neuronal populations drive fatal phenotype in a mouse model of leigh syndrome

    Get PDF
    Altres ajuts: Seattle Children's Research Institute: Seed Funds;NINDS: R01 NIH/NS 102796; University of Washington Neurological Surgery Department: Ellenbogen Neurological Surgery Research Funds; University of Washington: The Ryan J. Murphy SUDEP Research Funds; Mitochondrial Research Guild: Seed FundsMitochondrial deficits in energy production cause untreatable and fatal pathologies known as mitochondrial disease (MD). Central nervous system affectation is critical in Leigh Syndrome (LS), a common MD presentation, leading to motor and respiratory deficits, seizures and premature death. However, only specific neuronal populations are affected. Furthermore, their molecular identity and their contribution to the disease remains unknown. Here, using a mouse model of LS lacking the mitochondrial complex I subunit Ndufs4, we dissect the critical role of genetically-defined neuronal populations in LS progression. Ndufs4 inactivation in Vglut2expressing glutamatergic neurons leads to decreased neuronal firing, brainstem inflammation, motor and respiratory deficits, and early death. In contrast, Ndufs4 deletion in GABAergic neurons causes basal ganglia inflammation without motor or respiratory involvement, but accompanied by hypothermia and severe epileptic seizures preceding death. These results provide novel insight in the cell type-specific contribution to the pathology, dissecting the underlying cellular mechanisms of MD

    Adaptive regulation of calcium excitability and energy metabolism by CREB-dependent transcription in astrocytes: study of the mechanisms governing astrocyte plasticity

    Get PDF
    Cada cop més evidencies suggereixen que els astròcits participen en les altes funcions cerebrals, controlant des de la transmissió sinàptica fins a les ones cerebrals globals i els processos d’aprenentatge i memòria. Diferents mecanismes han sigut proposats com a responsables d’aquests processos mediats per astròcits, entre ells, l’alliberació de gliotransmissors a partir de les senyals de calci així com la de lactat semblen els principals efectors. L’existència d’aquest control de les funcions cerebrals per part dels astròcits suggereix que aquestes cèl·lules poden regular les funcions cerebrals en resposta a experiència tan com les neurones, constituint el fenomen de plasticitat astrocitària. En neurones s’ha demostrat que el conegut factor de transcripció CREB, coordina les plasticitats sinàptica i intrínseca. El fet que, en astròcits, l’activació de CREB també està regulada per activitat cerebral, situa aquest factor de transcripció com a la diana ideal per promoure canvis dependents d’activitat en astròcits. En aquesta tesi hem analitzat l’efecte de l’activació de la transcripció depenent de CREB en astròcits, centrant-nos en l’excitabilitat del calci i en el metabolisme d’aquestes cèl·lules. Hem demostrat que l’activació de la transcripció depenent de CREB redueix les senyals citosòliques de calci a través del mitocondri a la vegada que augmenta l’alliberació de lactat, dos canvis que poden tenir impacte en la transmissió sinàptica. Una altra contribució important d’aquest estudi es l’anàlisi molecular dels mitocondris dels astròcits, que ha revelat que aquestes cèl·lules poden utilitzar metabòlits que no són glucosa, com ara àcids grassos, per respondre a les necessitats metabòliques energètiques. Els nostres resultats estableixen el CREB en astròcits con un eix de la plasticitat astrocitària i revelen la interacció entre la plasticitat i el metabolisme energètic en astròcits. Aquests descobriments constitueixen un avenç mecanístic i conceptual en el coneixement de la biologia dels astròcits i com aquestes cèl·lules poden controlar l’aprenentatge i la memòria.An increasing body of evidence suggests that astrocytes participate in higher-brain functions, controlling from synaptic transmission to global brain waves and learning and memory processes. Different mechanisms have been proposed to mediate these astrocyte-dependent processes, astrocytic lactate release and calcium-dependent gliotransmission being the main known effectors. The existence of control of brain functions by astrocytes suggests that astrocytes may shape brain functions in response to experience as much as neurons, thus constituting the phenomenon of astrocyte plasticity. In neurons, the transcription factor CREB is the best known coordinator of synaptic and intrinsic plasticity. The fact that, in astrocytes, CREB activation is also activity-dependent, positions CREB as an ideal target to promote plasticity-related changes in astrocytes, too. In this thesis, we have analyzed the effect of the activation of CREB-dependent transcription in astrocytes, specifically regarding calcium signals and metabolism. We have demonstrated that activation of CREB-dependent transcription reduces cytosolic calcium events via mitochondria and increases in lactate release, which may have impact on synaptic transmission. An important contribution of the study is the molecular analysis of astrocytic mitochondria, which has revealed that astrocytes may use fuels other than glucose such as fatty acids to meet basic energy metabolic demands. Taken together, our results establish astrocytic CREB as a hub in astrocyte-plasticity and shed light on the interplay between plasticity and energy metabolism in astrocytes; these findings constitute a conceptual and mechanistic advance in the knowledge of astrocytic biology and how these cells may control learning and memory

    Adaptive regulation of calcium excitability and energy metabolism by CREB-dependent transcription in astrocytes: study of the mechanisms governing astrocyte plasticity

    No full text
    Cada cop més evidencies suggereixen que els astròcits participen en les altes funcions cerebrals, controlant des de la transmissió sinàptica fins a les ones cerebrals globals i els processos d’aprenentatge i memòria. Diferents mecanismes han sigut proposats com a responsables d’aquests processos mediats per astròcits, entre ells, l’alliberació de gliotransmissors a partir de les senyals de calci així com la de lactat semblen els principals efectors. L’existència d’aquest control de les funcions cerebrals per part dels astròcits suggereix que aquestes cèl·lules poden regular les funcions cerebrals en resposta a experiència tan com les neurones, constituint el fenomen de plasticitat astrocitària. En neurones s’ha demostrat que el conegut factor de transcripció CREB, coordina les plasticitats sinàptica i intrínseca. El fet que, en astròcits, l’activació de CREB també està regulada per activitat cerebral, situa aquest factor de transcripció com a la diana ideal per promoure canvis dependents d’activitat en astròcits. En aquesta tesi hem analitzat l’efecte de l’activació de la transcripció depenent de CREB en astròcits, centrant-nos en l’excitabilitat del calci i en el metabolisme d’aquestes cèl·lules. Hem demostrat que l’activació de la transcripció depenent de CREB redueix les senyals citosòliques de calci a través del mitocondri a la vegada que augmenta l’alliberació de lactat, dos canvis que poden tenir impacte en la transmissió sinàptica. Una altra contribució important d’aquest estudi es l’anàlisi molecular dels mitocondris dels astròcits, que ha revelat que aquestes cèl·lules poden utilitzar metabòlits que no són glucosa, com ara àcids grassos, per respondre a les necessitats metabòliques energètiques. Els nostres resultats estableixen el CREB en astròcits con un eix de la plasticitat astrocitària i revelen la interacció entre la plasticitat i el metabolisme energètic en astròcits. Aquests descobriments constitueixen un avenç mecanístic i conceptual en el coneixement de la biologia dels astròcits i com aquestes cèl·lules poden controlar l’aprenentatge i la memòria.An increasing body of evidence suggests that astrocytes participate in higher-brain functions, controlling from synaptic transmission to global brain waves and learning and memory processes. Different mechanisms have been proposed to mediate these astrocyte-dependent processes, astrocytic lactate release and calcium-dependent gliotransmission being the main known effectors. The existence of control of brain functions by astrocytes suggests that astrocytes may shape brain functions in response to experience as much as neurons, thus constituting the phenomenon of astrocyte plasticity. In neurons, the transcription factor CREB is the best known coordinator of synaptic and intrinsic plasticity. The fact that, in astrocytes, CREB activation is also activity-dependent, positions CREB as an ideal target to promote plasticity-related changes in astrocytes, too. In this thesis, we have analyzed the effect of the activation of CREB-dependent transcription in astrocytes, specifically regarding calcium signals and metabolism. We have demonstrated that activation of CREB-dependent transcription reduces cytosolic calcium events via mitochondria and increases in lactate release, which may have impact on synaptic transmission. An important contribution of the study is the molecular analysis of astrocytic mitochondria, which has revealed that astrocytes may use fuels other than glucose such as fatty acids to meet basic energy metabolic demands. Taken together, our results establish astrocytic CREB as a hub in astrocyte-plasticity and shed light on the interplay between plasticity and energy metabolism in astrocytes; these findings constitute a conceptual and mechanistic advance in the knowledge of astrocytic biology and how these cells may control learning and memory

    Adaptive regulation of calcium excitability and energy metabolism by CREB-dependent transcription in astrocytes : study of the mechanisms governing astrocyte plasticity /

    Get PDF
    Premi Extraordinari de Doctorat concedit pels programes de doctorat de la UAB per curs acadèmic 2017-2018Cada cop més evidencies suggereixen que els astròcits participen en les altes funcions cerebrals, controlant des de la transmissió sinàptica fins a les ones cerebrals globals i els processos d'aprenentatge i memòria. Diferents mecanismes han sigut proposats com a responsables d'aquests processos mediats per astròcits, entre ells, l'alliberació de gliotransmissors a partir de les senyals de calci així com la de lactat semblen els principals efectors. L'existència d'aquest control de les funcions cerebrals per part dels astròcits suggereix que aquestes cèl·lules poden regular les funcions cerebrals en resposta a experiència tan com les neurones, constituint el fenomen de plasticitat astrocitària. En neurones s'ha demostrat que el conegut factor de transcripció CREB, coordina les plasticitats sinàptica i intrínseca. El fet que, en astròcits, l'activació de CREB també està regulada per activitat cerebral, situa aquest factor de transcripció com a la diana ideal per promoure canvis dependents d'activitat en astròcits. En aquesta tesi hem analitzat l'efecte de l'activació de la transcripció depenent de CREB en astròcits, centrant-nos en l'excitabilitat del calci i en el metabolisme d'aquestes cèl·lules. Hem demostrat que l'activació de la transcripció depenent de CREB redueix les senyals citosòliques de calci a través del mitocondri a la vegada que augmenta l'alliberació de lactat, dos canvis que poden tenir impacte en la transmissió sinàptica. Una altra contribució important d'aquest estudi es l'anàlisi molecular dels mitocondris dels astròcits, que ha revelat que aquestes cèl·lules poden utilitzar metabòlits que no són glucosa, com ara àcids grassos, per respondre a les necessitats metabòliques energètiques. Els nostres resultats estableixen el CREB en astròcits con un eix de la plasticitat astrocitària i revelen la interacció entre la plasticitat i el metabolisme energètic en astròcits. Aquests descobriments constitueixen un avenç mecanístic i conceptual en el coneixement de la biologia dels astròcits i com aquestes cèl·lules poden controlar l'aprenentatge i la memòria.An increasing body of evidence suggests that astrocytes participate in higher-brain functions, controlling from synaptic transmission to global brain waves and learning and memory processes. Different mechanisms have been proposed to mediate these astrocyte-dependent processes, astrocytic lactate release and calcium-dependent gliotransmission being the main known effectors. The existence of control of brain functions by astrocytes suggests that astrocytes may shape brain functions in response to experience as much as neurons, thus constituting the phenomenon of astrocyte plasticity. In neurons, the transcription factor CREB is the best known coordinator of synaptic and intrinsic plasticity. The fact that, in astrocytes, CREB activation is also activity-dependent, positions CREB as an ideal target to promote plasticity-related changes in astrocytes, too. In this thesis, we have analyzed the effect of the activation of CREB-dependent transcription in astrocytes, specifically regarding calcium signals and metabolism. We have demonstrated that activation of CREB-dependent transcription reduces cytosolic calcium events via mitochondria and increases in lactate release, which may have impact on synaptic transmission. An important contribution of the study is the molecular analysis of astrocytic mitochondria, which has revealed that astrocytes may use fuels other than glucose such as fatty acids to meet basic energy metabolic demands. Taken together, our results establish astrocytic CREB as a hub in astrocyte-plasticity and shed light on the interplay between plasticity and energy metabolism in astrocytes; these findings constitute a conceptual and mechanistic advance in the knowledge of astrocytic biology and how these cells may control learning and memory

    CB1R-dependent regulation of astrocyte physiology and astrocyte-neuron interactions

    No full text
    The endocannabinoid system (ECS) is involved in a variety of brain functions, mainly through the activation of the type-1 cannabinoid receptors (CB1R). CB1R are highly expressed throughout the brain at different structural, cellular and subcellular locations and its activity and expression levels have a direct impact in synaptic activity and behavior. In the last few decades, astrocytes have arisen as active players of brain physiology through their participation in the tripartite synapse and through their metabolic interaction with neurons. Here, we discuss some of the mechanisms by which astroglial CB1R at different subcellular locations, regulate astrocyte calcium signals and have an impact on gliotransmission and metabolic regulation. In addition, we discuss evidence pointing at astrocytes as potential important sources of endocannabinoid synthesis and release. Thus, we summarize recent findings that add further complexity and establish that the ECS is a fundamental effector of astrocyte functions in the brain. This article is part of the special issue on ‘Cannabinoids'.Dissection des mécanismes hypothalamiques impliqués dans la détection du statut nutritionnel et régulation de la prise alimentaire via les interactions entre mTORC1, les mélanocortines et les endocannabinoïdes.Représentation sensorielle lors d'états psychotiquesRecepteurs aux cannabinoides dans le codage visuel corticalRôle du récepteur aux cannabinoïdes de type 1 mitochondriale dans les circuits hypothalamiques et son interaction avec la voie mTORC1 dans l'obésité.Bordeaux Region Aquitaine Initiative for Neuroscienc
    corecore