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Abstract Mitochondrial deficits in energy production cause untreatable and fatal pathologies

known as mitochondrial disease (MD). Central nervous system affectation is critical in Leigh

Syndrome (LS), a common MD presentation, leading to motor and respiratory deficits, seizures and

premature death. However, only specific neuronal populations are affected. Furthermore, their

molecular identity and their contribution to the disease remains unknown. Here, using a mouse

model of LS lacking the mitochondrial complex I subunit Ndufs4, we dissect the critical role of

genetically-defined neuronal populations in LS progression. Ndufs4 inactivation in Vglut2-

expressing glutamatergic neurons leads to decreased neuronal firing, brainstem inflammation,

motor and respiratory deficits, and early death. In contrast, Ndufs4 deletion in GABAergic neurons

causes basal ganglia inflammation without motor or respiratory involvement, but accompanied by

hypothermia and severe epileptic seizures preceding death. These results provide novel insight in

the cell type-specific contribution to the pathology, dissecting the underlying cellular mechanisms

of MD.

DOI: https://doi.org/10.7554/eLife.47163.001

Introduction
Leigh syndrome (LS) is the most frequent pediatric mitochondrial disorder, leading to defective mito-

chondrial energy metabolism. LS affects 1 in 40,000 births (Rahman et al., 1996), although adult

onset has also been described (McKelvie et al., 2012). Mutations in more than 75 genes have been

described to cause LS (Lake et al., 2016). To date, no effective treatment or cure exists. Clinically,

albeit highly variable, LS symptoms usually include failure to thrive, hypotonia, rigidity, seizures,

ataxia, lactic acidosis, encephalopathy and premature death (Rahman et al., 1996; Lake et al.,

2016; Sofou et al., 2014). LS is characterized by restricted anatomical and cellular
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specificity (Arii and Tanabe, 2000), a common feature shared by mitochondrial diseases, affecting

high energy-requiring tissues such as muscle and brain (Molnar and Kovacs, 2017). Pathologically,

LS is characterized by the presence of bilateral symmetrical lesions predominantly in the brainstem

and basal ganglia (Arii and Tanabe, 2000). Neuronal damage is responsible for most of the fatal

symptoms, including respiratory failure and seizures (Barends et al., 2016). However, the identity of

the affected cellular populations and the molecular determinants of neuronal vulnerability have not

been adequately elucidated, representing a challenge for the development of efficient treatments.

Mutations affecting the NDUFS4 subunit of mitochondrial Complex I, a key structural component

for the assembly, stability and activity of the complex (Calvaruso et al., 2012), are commonly associ-

ated with a severe, early-onset LS phenotype (Ortigoza-Escobar et al., 2016). Although a late-onset

case of LS has been recently reported (Bris et al., 2017), prognosis is usually poor and most of the

patients die in early childhood (Sofou et al., 2014).

Animals with a global deletion of Ndufs4 (Ndufs4KO mice) develop a fatal encephalomyopathy,

which recapitulates the classical signs of LS, including motor alterations, respiratory deficits, epilepsy

and premature death (Quintana et al., 2010; Kruse et al., 2008). Behavioral and neuropathological

characterization of Ndufs4KO mice revealed the pivotal role of the dorsal brainstem, particularly the

vestibular nucleus (VN), in disease manifestation and progression (Quintana et al., 2012). However,

the genetic identity of the neuronal populations and circuitries involved in the plethora of symptoms

observed have not yet been identified.

Here, we describe the contribution of genetically defined, discrete neuronal populations to the

fatal phenotype of Ndufs4KO mice. To that end, we generated three mouse lines using a conditional

genetic approach that selectively inactivates Ndufs4 in glutamatergic (Vglut2-expressing),

eLife digest Mitochondria are often described as the power plants of cells because they

generate most of the energy that a cell needs to survive. But one in every 5,000 children is born with

a mutation that leads to faulty mitochondria, which generate less energy than their healthy

counterparts. This is particularly problematic for tissues with high energy demands, such as the brain

and muscles. Children with such mutations are said to have mitochondrial disease, and one of the

most common and severe forms is Leigh syndrome.

Children with Leigh syndrome suffer from epilepsy, and have difficulties with movement and

breathing. There is no treatment for Leigh syndrome, and most of those affected will die in

childhood. The brains of children with Leigh syndrome show a characteristic pattern of damage and

inflammation, symmetrical across both hemispheres, with two areas of the brain affected the most.

First, the brainstem, which connects the brain with the spinal cord and is responsible for many vital

functions such as breathing, maintaining the heart rate or swallowing. Secondly, a group of neurons

deep within the brain called the basal ganglia, which has a role in voluntary movement.

But although all of a patient’s neurons carry the mutation responsible for their Leigh syndrome,

not every neuron is harmed by it. Knowing which neurons are affected, and why, could help develop

treatments. Bolea, Gella, Sanz et al. therefore introduced the same Leigh syndrome mutation into

different groups of neurons in three groups of mice. The first group had the mutation in the neurons

that activate other cells, called glutamatergic or ’go’ neurons. The second group had the mutation in

the neurons that inhibit other cells, known as GABAergic, or ’stop’, neurons. The third had the

mutation in cholinergic neurons, which carry information from the brain to the organs.

Examining the mice revealed that having faulty mitochondria in GABAergic neurons from the

basal ganglia and in glutamatergic neurons of the brainstem, but not in cholinergic neurons, leads to

the symptoms of Leigh syndrome. The fault in the GABAergic neurons causes the epilepsy

associated with the syndrome, while faulty mitochondria in the glutamatergic neurons give rise to

the observed impairments in movement and breathing. This work could help researchers identify the

cellular mechanisms that make neurons more or less resistant to the effects of faulty mitochondria.

This in turn will provide a stepping stone to developing new treatments, which can then be tested

on the mice developed for these experiments.

DOI: https://doi.org/10.7554/eLife.47163.002
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GABAergic (Gad2-expressing) or cholinergic (ChAT-expressing) neurons. The results reveal distinct,

lethal phenotypes for the glutamatergic and GABAergic neuronal populations.

Results

Reduced lifespan and body weight in cell type-specific conditional
Ndufs4KO mice
To dissect the neuronal cell types contributing to the neuropathology observed in Ndufs4KO mice

(Quintana et al., 2010; Kruse et al., 2008; Quintana et al., 2012), we generated three mouse lines

lacking Ndufs4 selectively in glutamatergic (expressing Vglut2), GABAergic or cholinergic neurons.

We did this by crossing Ndufs4 exon2-floxed mice with Cre-driver lines of mice expressing either

Slc17a6-Cre, Gad2-Cre or Chat-Cre as described in Figure 1A and Figure 1—figure supplement 1;

the affected mice are referred to here as: Vglut2:Ndufs4cKO, Gad2:Ndufs4cKO or ChAT:Ndufs4cKO

mice and their respective controls are Vglut2:Ndufs4cCT, Gad2:Ndufs4cCT or ChAT:Ndufs4cCT.

Ndusf4 gene inactivation in glutamatergic or GABAergic neurons of both male and female mice

resulted in failure to thrive and premature death (Figure 1B–F); however, there was no effect on sur-

vival, body weight, or motor function when Ndufs4 expression was abolished in cholinergic neurons

(Figure 1—figure supplement 1). Selective deletion of Ndufs4 in glutamatergic or GABAergic neu-

rons was confirmed by western blot analysis of NDUFS4 levels in brain areas where Vglut2 or Gad2

are preferentially expressed (Lein et al., 2007) (Figure 1—figure supplement 2). Vglut2:Ndufs4cKO

mice had a median lifespan of 67 days with a mortality rate of 90% at postnatal day (P) 128. Similarly,

Gad2:Ndufs4cKO mice had a median lifespan of 60 days (90% mortality at P70) (Figure 1B). This

premature death was preceded by a reduction in body weight gain in male and female mice of both

genotypes (Figure 1C–F). At 7 weeks of age for females and 9 weeks of age for males, Vglut2:

Ndufs4cKO mice stopped gaining weight, which resulted in an overall reduction in body weight

when compared to age-matched controls (Figure 1C,D). Similarly, male and female Gad2:

Ndufs4cKO mice body weight reached a plateau 2–3 weeks before manifesting a sudden unex-

pected death (Figure 1E,F). Both Vglut2:Ndufs4cKO and Gad2:Ndufs4cKO mice were also signifi-

cantly smaller than their littermate controls (Figure 1G–H). This lack of weight gain and reduced size

appeared to be due to decreased food intake in both genotypes (Figure 1I,J); however, this was

not significantly different when food consumption was normalized to body weight (Figure 1—figure

supplement 2).

Vglut2:Ndufs4cKO and Gad2:Ndufs4cKO mice manifest clinically
distinct phenotypes
The reduced lifespan and decreased body weight observed in both Vglut2:Ndufs4cKO and Gad2:

Ndufs4cKO mice were the result of two prominently different clinical presentations. Gad2:

Ndufs4cKO mice were, for the most part, phenotypically indistinguishable from controls, without any

overt clinical alteration beyond a reduced growth rate for a few weeks prior to a sudden premature

death. On the other hand, Vglut2:Ndufs4cKO mice manifested progressive motor and respiratory

deterioration with most of the clinical signs visibly apparent (Table 1).

Vglut2:Ndufs4cKO mice presented body tremor and a decline in balance as early as at 5 weeks

(early stage of the disease), which dramatically worsened as the disease progressed. In a mid-stage

of the disease, mice increased body tremor and showed a prominent decline in balance and motor

coordination (Table 1). Subsequently, animals started exhibiting ataxia and a progressive loss of the

righting and hindlimb extension reflexes (clasping) (Figure 1—figure supplement 3). At a late stage

of the disease, these mice showed increased tremor, were completely docile and hypotonic

(Table 1). Animals also had difficulty maintaining a regular breathing pattern at an early stage of the

disease. These breathing abnormalities worsened as the disease progressed with mice presenting

noticeably shorter and deeper respirations at advanced stages of the disease (Video 1). Further-

more, at a late stage of the disease (over P60), about 40% of Vglut2:Ndufs4cKO developed hindlimb

dragging and eventually hindlimb paralysis. We observed increased glial reactivity but no neuronal

loss in the spinal cord of these mice when compared to Vglut2:Ndufs4cCT mice, which was deter-

mined by immunoblot analysis of spinal cord lysates from Vglut2:Ndufs4cCT and Vglut2:Ndufs4cKO

mice using antibodies against GFAP (glial fibrillary acidic protein), Iba-1 (ionized calcium-binding
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adapter molecule 1) and NSE (neuronal specific enolase) (Figure 1—figure supplement 3). This glial

reactivity was further confirmed by immunofluorescence analysis using anti-GFAP and anti-Iba-1 anti-

bodies in the spinal cords of the Vglut2:Ndufs4cKO mice that exhibited hindlimb dragging (Fig-

ure 1—figure supplement 3, top panels). However, no signs of demyelination or immune cell

infiltration were observed (Figure 1—figure supplement 3, mid and bottom panels).

Figure 1. Generation of two mouse lines lacking Ndufs4 selectively in Vglut2-expressing glutamatergic neurons or Gad2-expressing GABAergic

neurons. (A) Breeding strategy to obtain mice with conditional Ndufs4 deletion in glutamatergic neurons (Vglut2:Ndufs4cKO) or GABAergic neurons

(Gad2:Ndufs4cKO) and their respective controls (Vglut2:Ndufs4cCT, Gad2:Ndufs4cCT). (B) Kaplan-Meier survival curve for Vglut2:Ndufs4cKO (n = 96;

blue), Gad2:Ndufs4cKO (n = 40; red) and cCT mice (n = 50; black). (C–D) Body weight curves for Vglut2:Ndufs4cKO (n = 57 males, n = 48 females; blue)

and Vglut2:Ndufs4cCT (n = 52 males, n = 50 females; black). (E–F) Body weight curves for Gad2:Ndufs4cKO (n = 30 males, n = 32 females; red) and

Gad2:Ndufs4cCT (n = 41 males, n = 34 females; black). Data are presented as the mean ± SEM. Statistical analysis was performed using a two-way

ANOVA (***p<0.001). (G) Representative images showing reduced body size in Vglut2:Ndufs4cKO mice when compared to Vglut2:Ndufs4cCT mice at

P65. (H) Gad2:Ndufs4cKO mice also display reduced body size when compared to control littermates (Gad2:Ndufs4cCT) at P70. Food intake values

(kcal/day) for (I) Vglut2:Ndufs4cKO (n = 6; closed blue squares) and Vglut2:Ndufs4cCT mice (n = 7; open black squares) and (J) Gad2:Ndufs4cKO (n = 6;

closed red circles) and Gad2:Ndufs4cCT mice (n = 5; open black circles) at 8 weeks of age. Data are presented as the mean ± SEM. Statistical analysis

was performed using an unpaired t-Test (**p<0.01, *p<0.05).

DOI: https://doi.org/10.7554/eLife.47163.003

The following figure supplements are available for figure 1:

Figure supplement 1. Generation and characterization of a conditional mouse line lacking Ndufs4 in ChAT-expressing neurons.

DOI: https://doi.org/10.7554/eLife.47163.004

Figure supplement 2. NDUFS4 levels and food intake after conditional deletion of Ndufs4 in Vglut2- and Gad2-expressing cells.

DOI: https://doi.org/10.7554/eLife.47163.005

Figure supplement 3. Reactive gliosis in the spinal cord of Vglut2:Ndufs4cKO mice.

DOI: https://doi.org/10.7554/eLife.47163.006
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Neuronal identity defines distinct neuroinflammatory patterns after
Ndufs4 deletion
LS is characterized by symmetrical brain lesions and neuroinflammation in select nuclei, predomi-

nantly brainstem and/or basal ganglia (Arii and Tanabe, 2000). Accordingly, late-stage Ndufs4-defi-

cient mice present overt lesions in brainstem (namely vestibular nucleus (VN), cerebellar fastigial

nucleus (FN) and inferior olive (IO)), olfactory bulb and basal ganglia (Quintana et al., 2010;

Quintana et al., 2012; Chen et al., 2017a). To define the contribution of Ndufs4 deficiency in either

excitatory or inhibitory neurons to the overall neuroinflammatory phenotype and identify the specific

brain areas with exacerbated astroglial and microglial reactivity, we performed immunofluorescence

analysis using anti-GFAP and anti-Iba1 antibodies on brain sections of Vglut2:Ndufs4cKO and Gad2:

Ndufs4cKO mice, and their respective controls (Figure 2A–D). Analysis of these sections showed

marked glial reactivity in VN, IO and FN (Figure 2A, C; Figure 2—figure supplement 1), accompa-

nied by increased caspase eight activation in affected areas (such as the VN) in Vglut2:Ndufs4cKO

mice (Figure 2E,F), recapitulating most of the neuroinflammatory profile described for the global

Ndufs4KO mice (Quintana et al., 2010). In contrast, Gad2:Ndufs4cKO mice presented a more

restricted glial reactivity pattern, including marked microglial and astroglial reactivity in primarily

GABAergic nuclei such as the external globus pallidus (GPe) in the basal ganglia and the substantia

nigra pars reticulata (SNr) (Figure 2B, D), without affecting neighboring non-GABAergic areas like

the dopaminergic substantia nigra pars compacta (SNc) (Figure 2—figure supplement 2). Other

prominently GABAergic areas such as the olfactory bulb also showed increased immunoreactivity for

GFAP and Iba-1 in Gad2:Ndufs4cKO mice when compared to control mice (Figure 2B,D; Figure 2—

figure supplement 1). In a percentage of Gad2:Ndufs4cKO mice, prominent microglial reactivity

with Purkinje neuron loss (as assessed by calbindin staining) was also observed in the cerebellar ver-

mis and flocculus (Figure 2—figure supplement 2). Normal Slc17a6 (Vglut2) or Gad2 transcript

abundance was observed in the VN and OB of late-stage Vglut2:Ndufs4cKO or Gad2:Ndufs4cKO

mice, respectively, suggesting preservation of Ndufs4-deficient neuronal populations (Figure 2G,H).

The extensive neuroinflammation present in the brainstem of Vglut2:Ndufs4cKO mice, and its

similarity to the phenotype of the global Ndufs4KO, allowed us to further define this inflammatory

phenotype using whole-tissue transcriptional profiling. Gene expression analysis in the brainstem of

late-stage (over P68) Vglut2:Ndufs4cKO mice using Illumina Beadchips (MouseRef-8 V2; Illumina)

showed that differentially expressed (DE) mRNAs were, for the most part, upregulated in Vglut2:

Ndufs4cKO mice (p<0.05, Fold Change > 2) (Figure 2—figure supplement 2). Selected genes

included transcripts directly involved in the regulation of the immune system such as chemokines

and their receptors (Ccl3, Ccl4 and Cxcr3), toll-like receptors (Tlr2, Tlr7), complement proteins

(C1qa, C1qb, C3 and C4b), surface antigens (Cd84, Cd86 and Ly9), and markers of the myeloid cell

lineage (infiltrating macrophages and microglia) including Lyz, Lyz2, Lyzs and Slc11a1, among

others.

Table 1. Neurological signs observed in Vglut2:Ndufs4cKO mice according to the stage of disease.

Early Mid Late

Body tremor + ++ +++

Motor alterations

Decline in balance + ++ +++

Ataxia - +/++ +++

Loss of motor coordination - +/++ +++

Inability of righting - + ++/+++

Hindlimb clasping - + ++

Respiratory abnormalities

Breathing irregularities + ++ +++

-, absent; +, mild; ++, moderate; +++, severe.

DOI: https://doi.org/10.7554/eLife.47163.007
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Functional enrichment analysis of differentially

expressed mRNAs (1.4-fold or higher) using over-

representation analysis (ORA) (Wang et al.,

2017) showed that the top 10 most overrepre-

sented Gene Ontology (GO) categories (biologi-

cal process, non-redundant) were all related to

defense and immune responses, and also uncov-

ered components of the adaptive immune

response (GO:0002250; p=2.0177e-12,

FDR = 7.2033e-10) including ‘leucocyte mediated

immunity’ (GO:0002443; p=1.7533e-12,

FDR = 7.2033e-10) and ‘myeloid leukocyte activa-

tion’ (GO:0002274; p=8.7458e-10,

FDR = 9.0537e-8) (Figure 2—figure supplement

2). Therefore, to further characterize the immune

cell composition in these whole tissue gene

expression profiles, we applied recently developed deconvolution tools that use leucocyte gene

expression signature matrices to computationally infer the relative proportions of each immune cell

type in gene expression mixtures (Newman et al., 2015; Chen et al., 2017b) (Figure 2—figure sup-

plement 2). This analysis revealed a gene expression profile consistent with an increased proportion

of proinflammatory CD4 cells (Follicular cells, Th1, Th17 and Treg), dendritic cells, mast cells and

macrophages, and an underrepresentation of CD4 Th2 cells, CD8 cells and NK cells in the brainstem

of Vglut2:Ndufs4cKO mice compared to controls, showing that Ndufs4 deficiency in glutamatergic

neurons promotes a neuroinflammatory environment that involves a commitment to distinct proin-

flammatory TH cell lineages and a defined profile of tissue defense cells.

Vglut2:Ndufs4cKO but not Gad2:Ndufs4cKO mice present motor
alterations and respiratory deficits
Motor dysfunction is a prominent feature in LS and Ndufs4KO mice pathology (Sofou et al., 2014;

Quintana et al., 2010). To genetically define the neuronal cell types mediating this functional disor-

der, we assessed motor coordination in Vglut2:Ndufs4cKO mice, Gad2:Ndufs4cKO mice, and their

respective controls (Figure 3). Starting at P40, and concurring with the onset of clinical signs,

Vglut2:Ndufs4cKO mice showed impaired rotarod performance when compared to control litter-

mates (Figure 3A). While control mice maintained rotarod performance, Vglut2:Ndufs4cKO mice

failed to properly execute the task, presenting a progressive decline in motor coordination, in line

with the clinical phenotype. Conversely, and in agreement with the lack of apparent clinical signs, no

differences in rotarod performance were observed in Gad2:Ndufs4cKO mice compared to control lit-

termates (Figure 3B). Exposure to a novel environment revealed a hypoactive phenotype in Vglut2:

Ndufs4cKO mice as assessed by a reduction in the total distance traveled and the speed of explor-

atory movement in the open-field test (Figure 3C–E). The severity of this phenotype in Vglut2:

Ndufs4cKO mice positively correlated with age and disease stage (Figure 3—figure supplement 1).

In contrast, no significant differences were observed in either distance traveled or speed in the

open-field test between Gad2:Ndufs4cKO mice and their respective controls (Figure 3F–H). No dif-

ferences in the innervation of neuromuscular junctions were observed in the gastrocnemius muscle

of either Vglut2:Ndufs4cKO or Gad2:Ndufs4cKO mice (Figure 3I–K), suggesting a central origin of

the motor phenotype.

Respiratory abnormalities are frequently associated with disease mortality in LS patients and

global Ndufs4KO mice (Arii and Tanabe, 2000; Quintana et al., 2012; Gerards et al., 2016). To

provide insight into the genetic identity of the neurons responsible for this respiratory phenotype,

we assessed respiratory function by unrestrained whole-body plethysmography in awake Vglut2:

Ndufs4cKO and Gad2:Ndufs4cKO mice. Vglut2:Ndufs4cKO mice exhibited erratic plethysmographic

recordings (Figure 4A). In these mice, the frequency of respiration (fR) was markedly reduced at a

mid-stage (P40-P60) of the disease and worsened as disease progressed (Figure 4C). In addition,

significant differences were also seen in the volume of air inspired by the animal during one breath

(tidal volume, VT). VT was increased in Vglut2:Ndufs4cKO mice at a mid-stage of the disease and

became significantly larger than in Vglut2:Ndufs4cCT at late disease stages (Figure 4D). In contrast,

Video 1. Breathing irregularities in a late-stage Vglut2:

Ndufs4cKO mice.

DOI: https://doi.org/10.7554/eLife.47163.008
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Figure 2. Distinct histopathological pattern in Vglut2:Ndufs4cKO and Gad2:Ndufs4cKO mice. (A) Whole-mount composite sagittal sections showing

GFAP (red) and Iba-1 (green) staining in late-stage Vglut2:Ndufs4cKO mice and their respective controls (Vglut2:Ndufs4cCT). Affected areas are

indicated: Vestibular nucleus (VN), inferior olive (IO) and fastigial nucleus (FN). (B) Whole-mount composite sagittal sections showing GFAP (red) and

Iba-1 (green) staining in Gad2:Ndufs4cKO mice and their respective controls (Gad2:Ndufs4cCT). Affected areas are indicated: External globus pallidus

Figure 2 continued on next page
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Gad2:Ndufs4cKO mice did not exhibit irregular plethysmographic traces and had breathing patterns

(fR and VT) that did not differ from controls (Figure 4B and E–F). These data reveal that the motor

impairment and respiratory deficits observed in the Ndufs4KO mouse are mediated by Vglut2-

expressing excitatory neuronal populations.

We have shown that neuronal inactivation of Ndufs4 in the VN promotes breathing

abnormalities (Quintana et al., 2012). This observation, along with the extensive neuroinflammation

observed in the VN of late-stage Vglut2:Ndufs4cKO mice, prompted us to assess the activity of

Vglut2-expressing neurons in the VN using in vivo electrophysiology. Cell-firing activity was recorded

during an open-field session before identification by laser stimulation of Channelrhodopsin-2 (ChR2)-

expressing vestibular glutamatergic neurons in Vglut2:Ndufs4cKO and Vglut2:Ndufs4cCT mice

(Figure 5A). Electrophysiological recordings in vivo showed that the firing rate for vestibular Vglut2-

expressing neurons from Vglut2:Ndufs4cKO mice was not significantly different than controls when

mice were at rest. However, when the mice were actively moving in the open-field, the Vglut2-

expressing VN neurons in the control mice approximately doubled their firing rate to about 40 Hz

but the experimental group did not (Figure 5B). The failure of VN glutamatergic neurons in Vglut2:

Ndufs4cKO mice to respond to motor activity may account for the breathing abnormalities.

Abnormal body temperature regulation in Gad2:Ndufs4cKO mice
Dysregulation of body temperature homeostasis, such as hypothermia, is commonly observed in LS

patients (Finsterer, 2008). Accordingly, global Ndufs4KO mice present reduced body temperature

starting at P30 (Quintana et al., 2010). However, the genetic identity of the neuronal population

involved in this phenotype was unknown. Hence, using telemetric temperature monitoring, we

observed that Vglut2:Ndufs4cKO presented normal resting body temperature during early life,

decreasing only as the disease progressed to mid-late stage (P40 onwards, Figure 6A). In contrast,

we identified a severe reduction in resting body temperature of Gad2:Ndufs4cKO as early as P20-

P30, which was maintained at all time points analyzed (Figure 6B). Therefore, our results suggest a

central role of GABAergic neurons in central body temperature regulation in the context of Ndufs4

deficiency.

Gad2:Ndufs4cKO manifest sudden unexpected death associated with
epilepsy
In Gad2:Ndufs4cKO mice, spontaneous seizure-like events were observed during routine husbandry

practices such as lifting the animal by the tail or cage cleaning (Video 2). To define whether fatal

seizures were the cause of the unanticipated death observed in Gad2:Ndufs4cKO mice, starting at

P40 animals were continuously video-recorded to monitor for potential seizures leading to an abrupt

death. Analysis of the recordings revealed that all deaths in Gad2:Ndufs4cKO mice consistently fol-

lowed a severe generalized tonic-clonic convulsion. In contrast, spontaneous, sporadic or lethal seiz-

ures were not observed in either controls (data not shown) or Vglut2:Ndufs4cKO mice at any stage

of the disease (Figure 7—figure supplement 1). Detailed visualization and analysis of the images

Figure 2 continued

(GPe), the sustantia nigra pars reticulata (SNr) and the olfactory bulb (OB). (C) Close-up micrographs showing GFAP and Iba1 staining in the VN, IO,

and FN of late-stage Vglut2:Ndufs4cKO and Vglut2:Ndufs4cCT mice. (D) Close-up micrographs showing GFAP and Iba-1 staining in the GPe, SNr and

OB in Gad2:Ndufs4cKO and Gad2:Ndufs4cCT mice. Scale bar A-B:1000 mm. C-D: 50 mm. (E–F) Western blot analysis (E) and quantification (F) for active

caspase eight and b-Actin (loading control) levels in the vestibular nucleus of late-stage Vglut2:Ndufs4cKO mice (n = 3) and Vglut2:Ndufs4cCT mice

(n = 3). (G) Slc17a6 (Vglut2) transcript levels in the vestibular nucleus of late-stage Vglut2:Ndufs4cKO mice (n = 3) and Vglut2:Ndufs4cCT mice (n = 3).

(H) Gad2 transcript levels in the olfactory bulb of Gad2:Ndufs4cKO mice (n = 3) and Gad2:Ndufs4cCT mice (n = 3). Data are presented as the

mean ± SEM. Statistical analysis was performed using an unpaired t-Test (*p<0.05).

DOI: https://doi.org/10.7554/eLife.47163.010

The following figure supplements are available for figure 2:

Figure supplement 1. Histopathological pattern in Vglut2:Ndufs4cKO and Gad2:Ndufs4cKO mice.

DOI: https://doi.org/10.7554/eLife.47163.011

Figure supplement 2. Ndufs4 deficiency in Gad2-expressing GABAergic and Vglut2-expressing glutamatergic cells results in prominent

neuroinflammation in specific areas.

DOI: https://doi.org/10.7554/eLife.47163.009
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Figure 3. Motor impairment in Vglut2:Ndufs4cKO mice. Latency to fall (seconds) in the Rotarod test for (A) Vglut2:

Ndufs4cKO (n = 8) and Vglut2:Ndufs4cCT mice (n = 10), and (B) Gad2:Ndufs4cKO (n = 4) and Gad2:Ndufs4cCT

mice (n = 10). Statistical analysis was performed using two-way ANOVA followed by Bonferroni post-test (*p<0.05,

***p<0.001). Representative mouse track plots, total distance traveled and average speed during 10 min in the

Figure 3 continued on next page
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unveiled that seizures in Gad2:Ndufs4cKO mice were mostly generalized and of multiple semiology

(unilateral, primary bilateral, secondary bilateral or alternating). Subsequent electroencephalographic

(EEG) and electromyographic (EMG) characterization showed the presence of spontaneous general-

ized tonic-clonic (GTC) seizures (Figure 7A), interictal spikes and myoclonic seizures in Gad2:

Ndufs4cKO mice (Figure 7B–C), which are hallmarks of epilepsy in mitochondrial

disorders (Rahman, 2015), with 40–60% of mitochondrial disease patients manifesting

seizures (Koenig, 2008; El Sabbagh et al., 2010; Canafoglia et al., 2001). In addition, local field

potential (LFP) recordings identified the presence of seizure-like events (Queiroz et al., 2009) in the

GPe of Gad2:Ndufs4cKO mice as soon as P35, while being absent in control mice (Figure 7D),

Figure 3 continued

open-field for (C–E) Vglut2:Ndufs4cKO (n = 36) and Vglut2:Ndufs4cCT mice (n = 70), and (F–H) Gad2:Ndufs4cKO

(n = 11) and Gad2:Ndufs4cCT mice (n = 16). Statistical analysis was performed using an unpaired t-Test

(***p<0.001). (I) Representative images of gastrocnemius neuromuscular junctions of Vglut2:Ndufs4cKO mice and

Gad2:Ndufs4cKO mice and their respective controls (scale bar: 100 mm). (J) Proportion of fully innervated

neuromuscular junctions in the gastrocnemius muscle of late-stage Vglut2:Ndufs4cKO and Vglut2:Ndufs4cCT mice

(n = 3 mice per group). (K) Quantification of fully innervated neuromuscular junctions in the gastrocnemius muscle

of the Gad2:Ndufs4cKO and Gad2:Ndufs4cCT mice (n = 3 mice per group). Statistical analysis was performed

using a Mann-Whitney test. Data are presented as the mean ± SEM.

DOI: https://doi.org/10.7554/eLife.47163.012

The following figure supplement is available for figure 3:

Figure supplement 1. Age-dependent motor decline in Vglut2:Ndufs4cKO mice.

DOI: https://doi.org/10.7554/eLife.47163.013

Figure 4. Breathing alterations in Vglut2:Ndufs4cKO mice. Representative 5 s plethysmographic recordings from (A) Vglut2:Ndufs4cCT mice (top), late-

stage Vglut2:Ndufs4cKO mice (bottom), and (B) Gad2:Ndufs4cCT mice (top) and Gad2:Ndufs4cKO mice (bottom). Respiratory frequency (fR,
breaths�min�1) and tidal volume (VT, mL�g

�1) for (C–D) Vglut2:Ndufs4cCT (n = 12) and Vglut2:Ndufs4cKO mice at different stages of the disease (early,

n = 7; mid, n = 8; late, n = 12) and (E–F) Gad2:Ndufs4cCT (n = 7) and Gad2:Ndufs4cKO mice (n = 7). Data are presented as the mean ± SEM. Statistical

analysis was performed using (C–D) one-way ANOVA followed by Bonferroni post-test (*p<0.05, **p<0.01, ***p<0.001) and (E–F) an unpaired t-Test.

DOI: https://doi.org/10.7554/eLife.47163.014
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suggesting that subcortical alterations in affected regions may precede the development of general-

ized seizures.

In individuals with mitochondrial disease, seizures are commonly observed after stressors such as

febrile events (Bindoff and Engelsen, 2012). Hence, susceptibility of Gad2:Ndufs4cKO mice to ther-

mally-induced seizures was assessed (Figure 7E–F). Gad2:Ndufs4cKO mice were highly sensitive to

temperature compared to Gad2:Ndufs4cCT mice, with some mice displaying seizures already at

basal temperature. The number of seizures significantly increased with temperature; 50% of the

mice exhibited seizures at 39.5˚C and all Gad2:Ndufs4cKO manifested seizures by 41.5˚C. Both

spontaneous and temperature-induced seizures were always preceded by a myoclonic (MC) seizure

(Figure 7A and F) with the latter being more severe (Racine scale stage 5) than the former (Racine

scale stage 4) (data not shown). Both spontaneous and thermally-evoked seizures were characterized

by EEG hyperactivity. Similarly to controls, Vglut2:Ndufs4cKO did not show susceptibility to temper-

ature-induced seizures up to 42˚C (data not shown). Peri-onset administration (from P40 onwards) of

the anti-epileptic drugs levetiracetam (60 mg/kg), perampanel (0.75 mg/kg) or carbamazepine (40

mg/kg) to Gad2:Ndufs4cKO mice failed to prevent fatal epileptic events, resulting in similar lifespan

(Figure 7—figure supplement 2). Drug-treated mice showed a median survival of 63, 62 and 66

days, respectively, which was not statistically significant when compared to the median lifespan of

vehicle-treated mice (60 days).

Figure 5. Vglut2-expressing glutamatergic cells in the vestibular nucleus show reduced in vivo electrophysiological activity in Vglut2:Ndufs4cKO mice.

(A) Representative identification of two different glutamatergic cells with raster plots (upper part) and peri-stimulus histograms (PSTH, lower part) using

optogenetic stimulation. 0 represents the onset of optogenetic stimulation. Red line represents mean firing rate from the 500 ms before the stimulus

plus three time the SD. Blue shading indicates period of laser stimulation. (B) Firing rate of Vglut2-expressing glutamatergic cells (n = 17 from Vglut2:

Ndufs4cCT mice and n = 12 from Vglut2:Ndufs4cKO mice) during a 10 min session in an open-field. Reduced electrophysiological activity was observed

in freely-moving late-stage Vglut2:Ndufs4cKO mice when compared to Vglut2:Ndufs4cCT mice regardless behavioral state (resting or active). Data are

presented as the mean ± SEM. Statistical analysis was performed using two-way repeated measures ANOVA with Bonferroni post-test (***p<0.001).

DOI: https://doi.org/10.7554/eLife.47163.015
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Discussion
Neuronal vulnerability is one of the hallmarks of Leigh Syndrome. However, the restricted anatomical

distribution of brain lesions indicates a clear gradation in neuronal susceptibility to LS-causing muta-

tions. Specific neuronal populations in affected regions, such as brainstem or basal ganglia, are

highly vulnerable to mitochondrial dysfunction and may underlie the plethora of neurological signs

observed in LS. The scarcity and high variability of patients has limited our knowledge on the genetic

identity and relative contribution of the affected neuronal populations to the phenotype; thus, a

model system with consistent neuropathological features resembling mitochondrial disease is a valu-

able research tool. We have shown (Quintana et al., 2010; Quintana et al., 2012) that mice lacking

the Ndufs4 gene (Ndufs4KO mice) recapitulate the clinical signs of the human disease (Ortigoza-

Escobar et al., 2016; Quintana et al., 2012). Ndufs4KO mice present overt lesions predominantly

in the brainstem (Quintana et al., 2010; Quintana et al., 2012; Johnson et al., 2013), but also in

the striatum in late stages of the disease (Quintana et al., 2012). Hence, we hypothesized that a

concerted role of diverse neuronal populations

was necessary to drive the plethora of symptoms

observed in Ndufs4KO mice.

In this study, we use a conditional genetic

approach to selectively ablate NDUFS4 in ChAT-

expressing cholinergic neurons (ChAT:

Ndufs4cKO), Vglut2-expressing glutamatergic

neurons (Vglut2:Ndufs4cKO) or Gad2-expressing

GABAergic neurons (Gad2:Ndufs4cKO), thus

restricting Complex I deficiency to some of the

most abundant neuronal populations. This

approach allowed us to provide a comprehensive

dissection of the neuronal involvement in the

phenotype of LS.

Animals lacking Ndufs4 in cholinergic neurons

(ChAT:Ndufs4cKO) were phenotypically

Figure 6. Decreased body temperature in Vglut2:Ndufs4cKO and Gad2:Ndufs4cKO mice. (A) Telemetric body temperature measurements in Vglut2:

Ndufs4cKO (n = 4–8) and Vglut2:Ndufs4cCT mice (n = 7–10) at different stages of the disease. (B) Telemetric body temperature measurements in Gad2:

Ndufs4cKO (n = 7–11) and Gad2:Ndufs4cCT mice (n = 5–7) at different ages. Data are presented as the mean ± SEM. Statistical analysis was performed

using two-way ANOVA followed by Bonferroni post-test (*p<0.05, ***p<0.001).

DOI: https://doi.org/10.7554/eLife.47163.016

Video 2. Generalized tonic-clonic seizure without

hypermotor (Racine scale stage 4) in Gad2:Ndufs4cKO

mice.

DOI: https://doi.org/10.7554/eLife.47163.020
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Figure 7. Gad2:Ndufs4cKO mice present epileptic seizures. (A) EEG-EMG recordings and spectrogram analysis showing the frequency and power

density of a typical spontaneous seizure in a Gad2:Ndufs4cKO mouse. A preceding myoclonic seizure (MC) is marked with an asterisk. (B)

Representative EEG-EMG traces and (C) number of epileptiform events (interictal spikes and myoclonic seizures) in Gad2:Ndufs4cKO (n = 9) and control

(Gad2:Ndufs4cCT; n = 5) mice. Data are presented as the mean ± SEM. Statistical analysis was performed using two-way ANOVA (***p<0.001). (D) Local

field potential (LFP) recordings in the globus pallidus of Gad2:Ndufs4cCT and Gad2:Ndufs4cKO mice at P35. Notice the presence of epileptic events

(red lines) in the traces from Gad2:Ndufs4cKO mice. (E) Percentage of Gad2:Ndufs4cKO and Gad2:Ndufs4cCT mice remaining seizure-free after

increasing body temperature. (F) Representative EEG-EMG recordings and spectrogram analysis of a thermally-induced seizure in a Gad2:Ndufs4cKO

mouse. A preceding myoclonic seizure (MC) is marked with an asterisk. Lft Cx, left cortex; Rt Cx: right cortex; EMG: electromyography.

DOI: https://doi.org/10.7554/eLife.47163.017

The following figure supplements are available for figure 7:

Figure supplement 1. Vglut2:Ndufs4cKO mice do not present spontaneous seizures.

DOI: https://doi.org/10.7554/eLife.47163.018

Figure supplement 2. Lifespan of Gad2:Ndufs4cKO mice is not extended by antiepileptic treatment.

DOI: https://doi.org/10.7554/eLife.47163.019
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equivalent to controls, indicating no overt contribution of this cell type to the pathology observed in

Ndufs4KO mice. In contrast, Vglut2:Ndufs4cKO and Gad2:Ndufs4cKO mice had reduced lifespan

and body weight, which was accompanied by a decrease in food intake, which are common clinical

signs that appear in Leigh Syndrome patients (Rahman et al., 1996; Smeitink, 2003). Recent reports

have shown that neuronal cell-specific NDUFS4 knock down in Drosophila also leads to severe feed-

ing abnormalities and premature death (Foriel et al., 2018). Our results indicate a conserved role

for neurons in the onset and progression of the pathological condition of global Ndufs4 deficiency

and reveal that both glutamatergic and GABAergic systems contribute to the growth and lethality

phenotype. Noteworthy, the slight reduction in phenotype severity of conditional neuronal Ndufs4

deficiency, with relative neuronal preservation, compared to the global Ndufs4KO mice suggests a

concerted contribution of different cell types. In this regard, our previous work has shown the impor-

tance of neuron-astrocyte crosstalk in the development of neurodegeneration in the context of mito-

chondrial disease (Liu et al., 2015). However, astrocytic Ndufs4 deficiency is not sufficient to

recapitulate the phenotype of global Ndufs4KO mice (Ramadasan-Nair et al., 2019), underscoring

the central role of neurons in the disease. Even so, recent studies have shown enhanced neuronal

survival in global Ndufs4KO after disruption of hepatic S6K1 (Ito et al., 2017). Hence, the role of cell

and tissue non-autonomous effects on disease progression have to be taken into account to fully

understand the phenotype of neuronal-specific conditional Ndufs4KO mice.

Apart from the premature death and feeding deficits, Vglut2:Ndufs4cKO and Gad2:Ndufs4cKO

mice present two markedly distinct clinical entities (summarized in Table 2). With Vglut2:Ndufs4cKO

mice, the lethality was associated with severe motor and respiratory alterations, whereas with Gad2:

Ndufs4cKO mice, sudden unexpected death was associated with epilepsy (SUDEP) (Abdel-

Mannan et al., 2019; Manolis et al., 2019; DeGiorgio et al., 2019) with no overt clinical alteration

beyond the weight loss.

Histologically, Vglut2:Ndufs4cKO mice present with prominent neuroinflammation and lesions in

areas of the brainstem such as the VN, IO and the cerebellar FN, reminiscent of the pathology found

in Ndufs4KO mice (Quintana et al., 2010). We have identified a critical role of brainstem lesions in

the development of fatal breathing alterations observed in the Ndufs4KO mice (Quintana et al.,

2012), in agreement with human LS patients (Arii and Tanabe, 2000). Glutamatergic signaling in the

brainstem has been shown to regulate breathing (Whitney et al., 2000). In addition, VN glutamater-

gic neurons have been suggested to modulate respiratory responses (Xu et al., 2002). Furthermore,

Table 2. Clinical signs inNdufs4-LS patients, Ndufs4KO mice and conditional Vglut2:Ndufs4cKO and

Gad2:Ndufs4cKO mice.

Ndufs4-LS
patients

Ndufs4KO
mouse

Vglut2:Ndufs4cKO
mouse*

Gad2:Ndufs4cKO
mouse*

Decreased lifespan 22/22 Yes Yes Yes

Feeding impairment 8/22 n.d Yes Yes

Reduced body weight n.a. Yes Yes Yes

Brainstem lesions 14/22 Yes Yes No

Basal ganglia lesions 9/22 Yes No Yes

Ataxia, motor alterations 22/22 Yes Yes No

Growth retardation 11/22 Yes Yes Yes

Hypotonia 22/22 Yes Yes No

Respiratory
abnormalities

22/22 Yes Yes No

Increased sensitivity to
VAs

n.a. Yes Yes† No†

Seizures 4/22 Yes No Yes

Hypothermia n.a. Yes Yes‡ Yes

n.d, not determined; n.a, not available. *Reported in this study. †Reported in Zimin et al. (2016). ‡Only in late-stage

mice. VAs: volatile anesthetics. Adapted from Quintana et al. (2012).

DOI: https://doi.org/10.7554/eLife.47163.021
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the Pre-Bötzinger (PreBotC) complex, a key respiratory center, is composed of glutamatergic

neurons (Stornetta et al., 2003) and receives extensive glutamatergic inputs (Bochorishvili et al.,

2012). We have shown that Ndufs4KO mice present intrinsic PreBotC alterations and that vestibular

projections to the PreBotC are necessary for maintaining respiration (Quintana et al., 2012). Our

electrophysiological recordings in Vglut2-expressing VN neurons from Vglut2:Ndufs4cKO mice show

relatively normal basal firing rate but fail to increase spiking in response to locomotor activity. Neu-

ronal firing is a highly energy-requiring process, mostly dependent in mitochondrial function

(Harris et al., 2012), especially in glutamatergic synapses (Juge et al., 2010; Zimin et al., 2016).

Hence, our results suggest that glutamatergic VN neurons are unable to achieve the energy require-

ments of increased firing rates. Thus, it is likely that failure of glutamatergic VN projections to the

PreBotC allowing appropriate responses to physiological needs underlies the breathing deficits

observed in Vglut2:Ndufs4cKO mice.

Development of brainstem lesions correlate with motor deficits in animals constitutively lacking

Ndufs4 (Quintana et al., 2010). Accordingly, strategies that improve motor symptoms in Ndufs4KO

mice, such as AAV-based gene therapy (Quintana et al., 2012; Di Meo et al., 2017), rapamycin

administration (Johnson et al., 2013), or hypoxia (Jain et al., 2016; Ferrari et al., 2017) cause a

marked reduction in brainstem lesions. Here, we have identified a critical role for Vglut2-expressing

glutamatergic neurons, in the brainstem and cerebellum, in the development of the motor deficits

observed after Ndufs4 deficiency. In keeping with this, conditional deletion of Ndufs4 in dopaminer-

gic neurons does not cause cell loss (Kim et al., 2015) or motor deficits (Choi et al., 2017). How-

ever, other areas, such as the striatum, may participate in the delayed, mild, progressive motor

dysfunction observed in LS patients (Chen et al., 2017a; Di Meo et al., 2017).

Our gene expression analysis in brainstem of Vglut2:Ndufs4cKO mice has enabled the generation

of an in-depth profile of the transcriptomic landscape in an affected brain area after Ndufs4 defi-

ciency. This analysis revealed a prominent increase in inflammatory mediators in the affected tissue.

However, anti-inflammatory or immunotherapeutic approaches have been mostly ineffective as treat-

ments for LS (Johnson et al., 2013; Finsterer and Zarrouk-Mahjoub, 2017) with only a few success-

ful cases reported (Chuquilin et al., 2016). Our deconvolution data show a marked infiltration of

distinct leucocyte populations, underscoring the complex cellular milieu elicited by mitochondrial

dysfunction that may underlie the failure of global anti-inflammatory approaches. Delineation of the

immune cells recruited to the brain lesions may lead to novel therapeutic approaches tailored for LS.

The Gad2-expressing GABAergic neurons do not participate in the appearance of respiratory or

motor deficits in Ndufs4 deficiency. However, they are critical for body temperature control and the

onset and development of the fatal epileptic seizures, features that are observed in both global

Ndufs4KO mice (Quintana et al., 2010) and LS patients (Finsterer, 2008; Koenig, 2008;

Finsterer and Zarrouk Mahjoub, 2012). Lack of Ndufs4 in Gad2-expressing neurons leads to the

appearance of neuroinflammation in the basal ganglia nuclei such as the GPe and SNr, in agreement

with the increased vulnerability of basal ganglia neurons to mitochondrial dysfunction

(Gubellini et al., 2010). Furthermore, we show that electrophysiological alterations in the GPe neu-

rons predate cortical epileptic events, suggesting a primary role of the basal ganglia circuitry in the

development of epileptic seizures in Gad2:Ndufs4cKO mice. Basal ganglia are involved in

epilepsy (Rektor et al., 2012; Badawy et al., 2013; Vuong and Devergnas, 2018), likely by acting

as an inhibitory input to cortical seizure spread via feedback mechanisms (Rektor et al., 2012).

Hence, we hypothesize that basal ganglia inhibitory network is affected in Gad2:Ndufs4cKO mice,

being unable to control the activity of cortical excitatory neurons, thus leading to epilepsy. Gad2:

Ndufs4cKO mice are resistant to different antiepileptic approaches, such as the widely-used antiepi-

leptic drugs carbamazepine, perampanel, and levetiracetam. Although earlier administration of

these drugs may have led to a better antiepileptic outcome, epilepsy-induced death in mitochondrial

disease patients is usually linked to refractory epileptic seizures (Finsterer and Zarrouk Mahjoub,

2012). Hence, Gad2:Ndufs4cKO mice may represent an excellent model to study epileptic mecha-

nisms in LS, a much needed area of research, especially considering that most commonly used anti-

epileptic drugs may promote mitochondrial toxicity (Finsterer, 2017).

As described, both LS patients (Finsterer, 2008) and NDUFS4-LS patients (Ortigoza-

Escobar et al., 2016) present predominant basal ganglia and brainstem affectation. Accordingly,

basal ganglia and brainstem lesions are prominent features in global Ndufs4KO (References:

Quintana et al., 2010; Quintana et al., 2012; Table 2), and GABAergic and glutamatergic
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conditional Ndufs4KO mice, respectively. However, alterations in other areas such as thalamus, cere-

bellum and spinal cord are also frequently observed, contributing to the clinical complexity of the

pathology (Arii and Tanabe, 2000; Lake et al., 2015). In line with our previous studies

(Quintana et al., 2010; Quintana et al., 2012), here we show the glutamatergic origin of cerebellar

and spinal cord alterations, probably contributing motor deficits observed in LS and Ndufs4KO. Clin-

ically, LS patients commonly present hypothermia and failure to thrive (Finsterer, 2008), which are

recapitulated in global Ndufs4KO mice (Quintana et al., 2010). Our work shows reduced body

weight and hypophagia in both Vglut2:Ndufs4cKO and Gad2:Ndufs4cKO, while hypothermia is

mainly restricted to the latter. Central control of food intake and thermoregulation heavily rely on

glutamatergic and GABAergic hypothalamic neuronal populations (Tan and Knight, 2018;

Sternson and Eiselt, 2017; Zhao et al., 2017). Hence, our results indicate, that even in the absence

of overt neuroinflammation, neuronal Ndusf4 deficiency may lead to hypothalamic impairment, as

observed in LS patients (Zinka et al., 2010).

One remaining question is the characterization of the underlying molecular mechanisms leading

to the specific vulnerability of defined neuronal populations to Ndufs4 deficiency. In this regard,

increased oxidative stress is one of the hallmarks of the phenotype (Quintana et al., 2010). Accord-

ingly, antioxidant treatments have proven moderate effectivity in the global Ndufs4KO mice

(Liu et al., 2015; de Haas et al., 2017). Initiation of extrinsic apoptotic cascades has also been

found in Ndufs4KO mice (Finsterer and Zarrouk-Mahjoub, 2017, and this work), even though EM

imaging demonstrated mostly necrotic death in affected brain regions of Ndufs4KO mice

(El Sabbagh et al., 2010). In this regard, the remarkable immune cell infiltration described in this

work may contribute to the initiation of these cascades. Finally, different studies have pointed at

metabolic dysregulation as a potential contributor to the pathology. In this regard, mTOR inhibition

or hypoxic conditions modify glycolytic levels, leading to clinical sign amelioration and extended life-

span in Ndufs4KO mice (Johnson et al., 2013; Jain et al., 2016).

In conclusion, we provide new insights on the genetic identity of affected neuronal populations in

LS by dissecting the associated cell type-specific molecular, biochemical, clinical and behavioral fea-

tures in a model of LS. Our work highlights the importance of addressing mitochondrial disease at

the cell type-specific level. The advent of new tools to assess transcriptomic and biochemical

changes at this level of resolution (Sanz et al., 2009; Bayraktar et al., 2019) bodes well for more

progress. Hence, our work broadens current understanding of the etiology of LS and paves the way

for future studies at the cell type-specific level to unravel the molecular determinants of neuronal

pathology in LS.

Materials and methods

Key resources table

Reagent type (species)
or resource Designation Source or reference Identifiers

Additional
information

Genetic reagent
(M. Musculus)

Slc17a6Cre (BAC-Vglut2::Cre) Borgius L, et al.
Mol Cell Neurosci. 2010;
45(3):245–57

MGI:4881727 Tg(Slc17a6-icre)1Oki

Genetic reagent
(M. Musculus)

Gad2Cre/+

(Gad2-IRES-Cre)
Taniguchi H, et al.
Neuron. 2011;
71(6):995–1013.

MGI:4418713 B6J.Cg-Gad2tm2
(cre)Zjh/MwarJ
JAXs Stock No: 028867

Genetic reagent
(M. Musculus)

ChatCre/+

(Chat-IRES-Cre)
Rossi J, et al.
Cell Metab. 2011;
13(2):195–204

MGI:6121363 B6.129S-Chattm1(cre)
Lowl/MwarJ
JAXs Stock No: 031661

Genetic reagent
(M. Musculus)

Ndufs4D/+ Kruse SE, et al.
Cell Metab. 2008;
7 (4):312–20

MGI:5614215 B6.129S4-Ndufs4tm1.
1Rpa/J
JAXs Stock No: 027058

Genetic reagent
(M. Musculus)

Ndufs4lox/lox Kruse SE, et al.
Cell Metab. 2008;
7 (4):312–20

MGI:5613135 B6.129S4-Ndufs4tm1
Rpa/J
JAXs Stock No: 026963
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Study approval
All experiments were conducted following the recommendations in the Guide for the Care and Use

of Laboratory Animals and were approved by the Animal Care and Use Committee of the Seattle

Children´s Research Institute and the Universitat Autònoma de Barcelona.

Animal husbandry
Mice were maintained with Teklad Global rodent diet No. 2014S (HSD Teklad Inc, Madison, Wis.)

and water available ad libitum in a vivarium with a 12 hr light/dark cycle at 22˚C.

Mouse genetics
The following mouse lines were used in this study: Slc17a6Cre (BAC-Vglut2::Cre) (Borgius et al.,

2010) mice were generated by Ole Kiehn. Gad2Cre/+ (Gad2-IRES-Cre) (Taniguchi et al., 2011) and

ChatCre/+ (Chat-IRES-Cre) (Rossi et al., 2011) mice were obtained from The Jackson Laboratory

(Stock No: 028867 and 031661, respectively) (Bar Harbor, ME). Ndufs4lox/lox and Ndufs4D/+ were pre-

viously generated by our group (Quintana et al., 2010; Kruse et al., 2008). Male and female mice

of different ages were used in this study. Sex and age of the animals are described in the figure

legends. All mice were on a C57BL/6J background after backcrossing for at least 10 generations.

Mice with conditional deletion of Ndufs4 in Vglut2-expressing glutamatergic neurons (Slc17a6Cre,

Ndufs4D/lox or Vglut2:Ndufs4cKO) were generated by crossing mice with one Ndufs4 allele deleted

and expressing a codon-improved Cre recombinase (iCre) under the Slc17a6 promoter (Slc17a6Cre,

Ndufs4D/+) to mice with two floxed Ndufs4 alleles (Ndufs4lox/lox). Mice with conditional deletion of

Ndusf4 in Gad2-expressing GABAergic neurons (Gad2Cre/+, Ndufs4lox/lox or Gad2:Ndufs4cKO) were

obtained by crossing mice with one floxed Ndufs4 allele and expressing Cre recombinase under the

control of the Gad2 promoter (Gad2Cre/+, Ndufs4lox/+) to mice carrying two floxed Ndufs4 alleles

(Ndufs4lox/lox). Similarly, mice with conditional Ndufs4 deletion in ChAT-expressing cholinergic neu-

rons (ChatCre/+, Ndufs4lox/lox or ChAT:Ndufs4cKO) were obtained by crossing mice carrying one

floxed Ndufs4 allele and expressing Cre recombinase driven by the ChAT promoter (ChatCre/+,

Ndufs4lox/+ mice) to Ndufs4lox/lox mice. Littermate controls were Slc17a6Cre, Ndufs4lox/+ (Vglut2:

Ndufs4cCT); Gad2Cre/+, Ndufs4lox/+ (Gad2:Ndufs4cCT) and ChatCre/+Ndufs4lox/+ (ChAT:Ndufs4cCT)

mice. In all cases, genotype of the offspring and absence of ectopic recombination (i.e. presence of

recombination bands in tail DNA samples) was determined by PCR analysis. Primer sequences have

been described (Kruse et al., 2008).

Clinical evaluation
Vglut2:Ndufs4cKO and Gad2:Ndufs4cKO mice were examined every other day for clinical signs

resulting from cell type-specific Ndufs4 inactivation. Physiological (body weight) and behavioral

(locomotor activity, motor coordination, gait/postural alterations) parameters were evaluated in

more than 50 animals for each mouse line and were grouped into the following categories based on

visual observation: ‘+++” severe manifestation of the clinical sign, ‘++” moderate manifestation of

the clinical sign, ‘+” mild clinical sign, “- “absence of clinical sign. Mice were humanely euthanized

after losing 20% of their peak body weight. Only Vglut2:Ndufs4cKO mice presented the overt and

progressive clinical signs. Albeit the presence of individual variability in the development of the dis-

ease, early stage was defined in the range P20-P40, mid-stage between P40-P60, and late stage at

ages over P60 in Vglut2:Ndufs4cKO.

Food intake analysis
Food consumption was recorded from 7 to 11 weeks of age using a Physiocage system (Panlab,

Spain). Data at 8 weeks of age (right before the median survival value) are presented, including

enough individuals to ensure sufficient statistical power.

Behavioral assays
Rotarod test
A standard rotarod device (Rotarod, San Diego Instruments, USA) was used to assess motor coordi-

nation and global physical condition of animals. Mice were placed on the spindle, which linearly

accelerated from 4 to 40 r.p.m and increased 2 r.p.m. every 10 s. Each mouse received five trials per
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day over 3 days with a 5 min rest period between trials. The trial ended when the mouse fell off the

spindle or after 3 min (cut-off time).

Open-field
Mice were placed in the open-field arena (560 [W]�365 [D]�400 [H] mm) and allowed to move freely

for 10 min. Locomotor activity of mice was next monitored and total distance traveled (m) and veloc-

ity (cm/s) measured using the EthoVision tracking software (Noldus).

Whole-body plethysmography
Ventilatory function was assessed by whole–body plethysmography (EMMS, England, UK) under

unrestrained conditions. The system was calibrated to 1 ml volume. An acclimation period of 45 min

was allowed for mice adaptation to the chamber, followed by a 15 min experimental period. For

Vglut2:Ndufs4cKO mice, plethysmography recordings were performed at different stages of the dis-

ease according to the clinical examination, and compared to littermate controls. Studies were also

conducted on Gad2:Ndufs4cKO mice between 50–60 days of age and compared to corresponding

controls. Respiratory frequency (FR; breaths�minute�1) and tidal volume normalized per body weight

(VT; mL�g
�1) were measured.

Tissue preparation
For immunofluorescence, mouse brains were collected and fixed overnight in 4% paraformaldehyde

(PFA) in PBS (pH 7.4). Subsequently, brains were cryoprotected in a PBS solution containing 30%

sucrose and frozen in dry ice. Frozen brains were embedded in OCT, sectioned at 30 mm in a cryo-

stat and rinsed in PBS prior to staining. For western blot analysis, brain areas (olfactory bulb, thala-

mus, spinal cord and globus pallidus) were dissected according to the Paxinos mouse brain

atlas (Paxinos and Frank, 2013) and flash-frozen in liquid nitrogen before homogenization.

Immunofluorescence
Tissue sections were rinsed in PBS-0.2% Triton X-100 (PBST) solution. Non-specific binding was

blocked with 10% normal donkey serum (NDS) in a PBST solution for 60 min at room temperature,

followed by overnight incubation at 4˚C with primary antibodies diluted in 1% NDS-PBST (1:2000 for

mouse anti-GFAP, Sigma; 1:1000 for chicken anti-GFAP, Abcam; 1:1000 for anti-Iba-1, Wako; 1:1000

for anti-TH, Millipore). Sections were then washed in PBST and incubated for 1 hr at room tempera-

ture with the corresponding Cy- (1:200, Jackson Immunoresearch) or Alexa Fluor-conjugated sec-

ondary antibodies (1:500, Thermo Fisher Scientific) in 1% NDS-PBST. Sections were finally washed in

PBS and rinsed in water before mounting onto slides with Fluoromount G (Electron Microscopy Sci-

ences) for microscopic analysis.

Immunofluorescence labeling of neuromuscular junctions
Gastrocnemius muscles were sectioned in 60 mm longitudinal sections, collected in 24-well plates in

sequential series of 4 slices per well in antifreezing solution. Sections were then blocked with PBS-

0.3%Triton-5%Normal Donkey serum and incubated 48 hr at 4˚C with primary antibodies anti-synap-

tophysin (1:500; AB130436, Abcam, UK) and anti-neurofilament 200 (NF200, 1:1000; AB5539, Milli-

pore, USA). After washes, sections were incubated overnight with Alexa 594-conjugated secondary

antibody (1:200; A11042, Invitrogen, USA) and Alexa 488 conjugated alfa-bungarotoxin (1:200;

B13422, Life Technologies, USA). Slides with the sections were then mounted in Fluoromount-G

(Southern Biotech, USA). Confocal images were captured with a scanning confocal microscope (LSM

700 Axio Observer, Carl Zeiss 40x/1.3 Oil DIC M27, Germany). Maximum projections images shown

in this study were created from 1.5 mm z projections. For neuromuscular junctions analysis, the pro-

portion of fully occupied endplates was determined by classifying each endplate as fully innervated

(when presynaptic terminals overly the endplate), partially innervated (when presynaptic terminals

were not clearly within the endplate) or vacant (no presynaptic label in contact with the endplate).

At least 3–4 fields with more than 80 endplates were analyzed per each muscle.
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Western blotting
Brain tissue samples were homogenized in iced-cold RIPA buffer (Santa Cruz Biotechnology) and

protein concentration determined by the BCA assay (Thermo Fisher Scientific). Thereafter, 20 mg of

protein lysates were heat-denatured in Laemmli sample buffer (Bio-Rad Laboratories, Inc), subjected

to 4–20% gradient SDS-PAGE and transferred to nitrocellulose membranes (Bio-Rad Laboratories,

Inc). Membranes were then blocked for 1 hr with 5% (w/v) dried skimmed milk in Tris-buffered saline

containing 0.1% Tween-20 (TBS-T) and incubated overnight at 4˚C with primary antibodies against

NDUFS4 (Abcam, mouse, 1:500), NSE (Dako, mouse, 1:1,000), GFAP (Sigma, mouse, 1:50,000), Iba1

(Wako, rabbit, 1:10,000), Active (cleaved) caspase 8 (Cell Signaling Technologies, 1:1000), b-actin

(Sigma, mouse, 1:20,000) or GAPDH (GeneTex, mouse, 1:40,000). After incubation with the corre-

sponding HRP-conjugated secondary antibodies (1:10,000; Jackson ImmunoResearch), membranes

were washed in TBS-T and developed using an enhanced chemiluminescence (ECL) detection system

(Pierce). Bands were quantified using Image J software (National Institutes of Health, USA).

Whole-genome gene expression (WGGEX) analysis
For WGGEX analysis, 150 ng of total RNA extracted from the brainstem of late-stage (over P68)

Vglut2:Ndufs4cKO (n = 4) and Vglut2:Ndufs4cCT mice (n = 4) was amplified and biotin-labeled using

the Illumina TotalPrep RNA Amplification kit (Ambion). 750 ng of the labeled cRNA was hybridized

to MouseRef-8 v2 expression beadchips (Illumina) for 16 hr before washing and analyzing according

to the manufacturer’s directions. Signal was detected using a BeadArray Reader (Illumina), and data

were analyzed for differential expression using the GenomeStudio data analysis software (Illumina).

Average normalization, the Illumina custom error model, and multiple testing corrections using the

Benjamini and Hochberg false discovery rate were applied to the analysis. Only transcripts with a dif-

ferential score of >13 (p<0.05) were considered. Normalized and raw data have been deposited in

the National Center for Biotechnology Information Gene Expression Omnibus (accession number

GSE125470). Functional enrichment analysis of differentially expressed mRNAs (1.4 fold or higher)

using overrepresentation analysis (ORA) was accomplished using WebGestalt (http://www.webges-

talt.org)(Wang et al., 2017). Characterization of the immune cell composition in these gene expres-

sion profiles was accomplished using the computational algorithm ImmuCC (Chen et al., 2017b).

Surgery
Mice underwent survival surgery to implant EEG and EMG electrodes under isoflurane anesthesia

with subcutaneous bupivacaine (1 mg/kg) for analgesia as described (Kalume et al., 2013). Using

aseptic technique, a midline incision was made anterior to posterior to expose the cranium. Each

EEG electrode consisted of a micro-screw attached to a fine diameter (130 mm bare; 180 mm coated)

silver wire. The screw electrodes were placed through the small cranial burr holes at visually identi-

fied locations: left and right frontal cortices approximately 1 mm anterior to the bregma and 3 mm

lateral of the sagittal suture. EMG electrodes were placed in back muscles. A reference electrode

was placed at the midline cerebellum and a ground electrode was placed subcutaneously over the

back and the skin was closed with sutures. All electrodes connected to a micro-connector system

and their impedances were typically <10 kW. After electrode placement, the skin was closed with

sutures and the mice were allowed to recover from surgery for 2–3 days.

Video-EEG-EMG
Recording approach was performed as described (Kalume et al., 2013). Simultaneous video-EEG-

EMG records were collected in conscious mice on a PowerLab 8/35 data acquisition unit using Lab-

chart 7.3.3 software (AD Instruments, Colorado Spring, Co). All bio-electrical signals were acquired

at 1 KHz sampling rate. The EEG signals were processed off-line with a 1–80 Hz bandpass filter and

the EMG signals with a 3 Hz highpass filter. Video-EEG-EMG data collected were analyzed using

Labchart software.

Thermal seizure induction
Mouse body temperature was controlled using a rectal temperature probe and a heat lamp attached

to a temperature controller in a feedback loop (Physitemp Instruments Inc, NJ). Briefly, as
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described (Oakley et al., 2009), body temperature was increased by 0.5˚C every 2 min until seizure

occurred or a 42˚C temperature was reached. Mice were immediately cooled using a small fan.

Electrophysiological studies
Surgery
Vglut2:Ndufs4cKO and Gad2:Ndufs4cKO mice and their respective controls (30 to 40 days old) were

anesthetized with 1.5% isoflurane and implanted with a homemade implant in either the vestibular

nuclei (AP: �6.0; ML: �1.0; DV: �4.00) or the lateral globus pallidus (AP: �0.46; ML: �1.95; DV:

�4.00), according to Paxinos (Paxinos and Frank, 2013). Briefly, a small craniotomy window was

made above the desired recording site and a 4-tetrode bundle was lowered into the brain until its

destination at 0.1 mm/sec (Robot Stereotaxic, Neurostar, Germany). As ground, a stainless steel

wire (0.075 mm diameter, Advent Research Material Ltd., England) was placed between skull and

dura over the cerebellum or visual cortex. Then the entire implant was attached and secured to the

animal head with dental cement. After surgery, animal welfare and body weight were documented

daily and mice allowed to recover for 10–14 days. In Vglut2:Ndufs4cKO mice and their respective

controls, a viral vector expressing the light-sensitive cation channel Channelrodopsin-2 in a Cre-

dependent manner (AAV-DIO-ChR2) was delivered into the VN prior to implantation of the tetrode

to identify glutamatergic Vglut2-expressing cells after blue light (473 nm) stimulation.

Electrophysiological data acquisition
To explore presence of seizures, the electrophysiological activity was recorded from Gad2:

Ndufs4cCT and Gad2:Ndufs4cKO freely-moving mice. After the recovery period, animals were

placed on a daily basis in an open-field arena and both local field potentials (LFPs) and extracellular

single-unit activity were recorded until the death of the animal. In Vglut2:Ndufs4cCT and Vglut2:

Ndufs4cKO mice, a tetrode bundle was attached along a fiber optic (Ø200 mm Core, 0.22 NA,

FG200UCC, Thorlabs, USA) to deliver light and record neuronal cells at the same time. Again, all ani-

mals were daily recorded in an open-field until death.

For all experiments, local field potential activity was amplified, A-D converted and sampled at 1

KHz and bandpass filtered at 0.1 to 250 Hz (DigitalLynx SX and Cheetah Data Acquisition System,

Neuralynx, USA). Continuous spike signals were also recorded, amplified, band-pass filtered (300 Hz

to 8 kHz) and sampled at 32 kHz. Optogenetic stimulations (ranging from 50 to 200 ms blue light

stimuli, 473 nm, delivered frequency from 1 to 40 Hz) were delivered through a blue-emitting diode

laser (473 nm DPSS Laser System, Laserglow Technologies, CA).

Electrophysiological data analysis
For the presence of seizures, data were analyzed in Spike2 (Cambridge Electronic Design Limited,

UK) for visual inspection and report presence of epileptic events. Offline single-unit spike sorting

was performed with Offline Sorter software (Offline Sorter, Plexon Inc, USA). Briefly, for each chan-

nel, a specific manual threshold was defined and all events bypassing this threshold were assumed

to be an action potential. After an overall waveform shape and three principal component analysis

(PCA) inspection, all spikes were sorted with an automatic K-mean algorithm to separate clusters of

cells. After sorting, a final inspection of ISI histogram and sorting statistics (MANOVA F statistics, J3

and the Davies-Bouldin validity index) was performed to ensure the best single-unit clustering. In

Vglut2:Ndufs4cCT and Vglut2:Ndufs4cKO mice, to identify glutamatergic neurons from all sorted

cells, response to optogenetic stimulations were plotted. For all stimulation trains, during a baseline

activity corresponding to 500 ms before stimulation, the mean number of spikes per bins was calcu-

lated. Then, a single cell was identified as glutamatergic only if, during optogenetic stimulation,

there were bins expressing a number of spikes superior to the baseline mean plus three times the

standard deviation of the baseline mean. Finally, after analysis of spiking activity (Matlab, Math-

Works, USA), cells with a coefficient of variation of interspike interval (CV.ISI) over three were

exclude from the data set.

Body core temperature measurement
The baseline temperature was acquired as follows: As for thermal seizure induction (Oakley et al.,

2009), a T-type implantable rectal probe was placed and taped to the tail with a lab tape. The probe
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was connected to a temperature monitoring device (T-pod) and the resting body core temperature

was monitored in unrestrained mice using a PowerLab 8/35 data acquisition unit and Labchart 7.3.3

software (AD Instruments, Colorado Spring, Co) for 10 min. The telemetric data are used for long-

term monitoring of temperature and its oscillation during circadian rhythm and sleep. Note that

baseline data obtained via the two methods are consistent.

Drug treatments
Levetiracetam (Keppra parental formulation), perampanel (Clinisciences) and carbamazepine (Sigma-

Aldrich) antiepileptic drugs were injected intraperitoneally in Gad2:Ndufs4cKO mice daily, starting

at P40. Levetiracetam and perampanel were dissolved in saline solution and injected at a dose of 60

mg/kg and 0.75 mg/kg, respectively. Carbamazepine was slowly diluted in PEG300, dissolved in

saline, and injected at 40 mg/kg. A control group for each drug was obtained by injecting each

respective vehicle to Gad2:Ndufs4cKO mice.

qRT-PCR analysis
qRT-PCR assays were performed as described (Sanz et al., 2015). Briefly, equal amounts of RNA

were assayed using the Power SYBR green RNA-to-Ct 1-Step Master Mix (Applied Biosystems) or

the TaqMan RNA-to-Ct 1-Step Master Mix (Applied Biosystems), depending on the system used

(SYBR or Taqman). Relative expression values were obtained using the standard curve method and

normalized to Actb levels. Amplification efficiencies were calculated using the AriaMx software (Agi-

lent) and were within accepted parameters (80–120%). Gad2 mRNA was determined using a specific

Taqman assay (Mm00484623_m1; Applied Biosystems), and sequences for the different primer sets

used in SYBR assays (Slc17a6 and Actb) were obtained from Primerbank (Spandidos et al., 2010).

Statistics
Data are shown as the mean ± SEM. GraphPad Prism v5.0 software was used for statistical analyses.

Appropriate tests were selected depending on the experimental design as stated in the figure

legends. Statistical significance, when reached (p<0.05 was considered significant), is stated in the

figure legends.

Acknowledgements
We thank Richard Palmiter, Diane Durnam and members of the Quintana lab for insightful discus-

sions, comments and edits. We thank our funders for their support.

Additional information

Funding

Funder Grant reference number Author

Ministerio de Economı́a y
Competitividad

JCI-2015-24576 Irene Bolea

European Commission H2020-MSCA-COFUND-
2014-665919

Alejandro Gella

European Commission H2020-MSCA-IF-2014-
658352

Elisenda Sanz

Ministerio de ciencia, investi-
gación y universidades

RTI2018-101838-J-I00 Elisenda Sanz

Ministerio de Economı́a y
Competitividad

BES-2015-073041 Patricia Prada-Dacasa

CIBERNED CB06/05/1105 Xavier Navarro

TERCEL RD16/0011/0014 Xavier Navarro

Instituto de Salud Carlos III Xavier Navarro

Bolea et al. eLife 2019;8:e47163. DOI: https://doi.org/10.7554/eLife.47163 21 of 26

Research article Neuroscience

https://doi.org/10.7554/eLife.47163


European Regional Develop-
ment Fund

Xavier Navarro

Seattle Children’s Research In-
stitute

Seed Funds Franck Kalume

NINDS R01 NIH/NS 102796 Franck Kalume

University of Washington Neu-
rological Surgery Department

Ellenbogen Neurological
Surgery Research Fund

Franck Kalume

University of Washington The Ryan J. Murphy SUDEP
Research Funds

Franck Kalume

Seattle Children’s Research In-
stitute

Seed Funds Albert Quintana

Mitochondrial Research Guild Seed Funds Albert Quintana

Ministerio de Economı́a y
Competitividad

RyC-2012-1187 Albert Quintana

European Research Council ERC-2014-StG-638106 Albert Quintana

Ministerio de Economı́a y
Competitividad

SAF2014-57981P Albert Quintana

Ministerio de Economı́a y
Competitividad

SAF2017-88108-R Albert Quintana
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related leigh syndrome: a case report and review of the literature. Mitochondrion 28:73–78. DOI: https://doi.
org/10.1016/j.mito.2016.04.001, PMID: 27079373

Paxinos G, Frank KBJ. 2013. The Mouse Brain in Stereotaxic Coordinates. Amsterdam: Academic Press.
Queiroz CM, Gorter JA, Lopes da Silva FH, Wadman WJ. 2009. Dynamics of evoked local field potentials in the
Hippocampus of epileptic rats with spontaneous seizures. Journal of Neurophysiology 101:1588–1597.
DOI: https://doi.org/10.1152/jn.90770.2008, PMID: 18842951

Quintana A, Kruse SE, Kapur RP, Sanz E, Palmiter RD. 2010. Complex I deficiency due to loss of Ndufs4 in the
brain results in progressive encephalopathy resembling leigh syndrome. PNAS 107:10996–11001. DOI: https://
doi.org/10.1073/pnas.1006214107, PMID: 20534480

Quintana A, Zanella S, Koch H, Kruse SE, Lee D, Ramirez JM, Palmiter RD. 2012. Fatal breathing dysfunction in a
mouse model of leigh syndrome. Journal of Clinical Investigation 122:2359–2368. DOI: https://doi.org/10.
1172/JCI62923

Rahman S, Blok RB, Dahl HH, Danks DM, Kirby DM, Chow CW, Christodoulou J, Thorburn DR. 1996. Leigh
syndrome: clinical features and biochemical and DNA abnormalities. Annals of Neurology 39:343–351.
DOI: https://doi.org/10.1002/ana.410390311, PMID: 8602753

Rahman S. 2015. Pathophysiology of mitochondrial disease causing epilepsy and status epilepticus. Epilepsy &
Behavior 49:71–75. DOI: https://doi.org/10.1016/j.yebeh.2015.05.003, PMID: 26162691

Ramadasan-Nair R, Hui J, Itsara LS, Morgan PG, Sedensky MM. 2019. Mitochondrial function in astrocytes is
essential for normal emergence from anesthesia in mice. Anesthesiology 130:423–434. DOI: https://doi.org/10.
1097/ALN.0000000000002528, PMID: 30707122

Rektor I, Kuba R, Brázdil M, Chrastina J. 2012. Do the basal ganglia inhibit seizure activity in temporal lobe
epilepsy? Epilepsy & Behavior 25:56–59. DOI: https://doi.org/10.1016/j.yebeh.2012.04.125, PMID: 22835431

Rossi J, Balthasar N, Olson D, Scott M, Berglund E, Lee CE, Choi MJ, Lauzon D, Lowell BB, Elmquist JK. 2011.
Melanocortin-4 receptors expressed by cholinergic neurons regulate energy balance and glucose homeostasis.
Cell Metabolism 13:195–204. DOI: https://doi.org/10.1016/j.cmet.2011.01.010, PMID: 21284986

Bolea et al. eLife 2019;8:e47163. DOI: https://doi.org/10.7554/eLife.47163 25 of 26

Research article Neuroscience

https://doi.org/10.1126/science.1244360
http://www.ncbi.nlm.nih.gov/pubmed/24231806
https://doi.org/10.1016/j.neuron.2010.09.002
https://doi.org/10.1016/j.neuron.2010.09.002
http://www.ncbi.nlm.nih.gov/pubmed/20920794
https://doi.org/10.1172/JCI66220
https://doi.org/10.1172/JCI66220
http://www.ncbi.nlm.nih.gov/pubmed/23524966
https://doi.org/10.1016/j.neurobiolaging.2015.05.008
http://www.ncbi.nlm.nih.gov/pubmed/26070241
https://doi.org/10.1016/j.pediatrneurol.2007.12.001
http://www.ncbi.nlm.nih.gov/pubmed/18410845
https://doi.org/10.1016/j.cmet.2008.02.004
https://doi.org/10.1016/j.cmet.2008.02.004
http://www.ncbi.nlm.nih.gov/pubmed/18396137
https://doi.org/10.1097/NEN.0000000000000195
https://doi.org/10.1097/NEN.0000000000000195
http://www.ncbi.nlm.nih.gov/pubmed/25978847
https://doi.org/10.1002/ana.24551
http://www.ncbi.nlm.nih.gov/pubmed/26506407
https://doi.org/10.1038/nature05453
https://doi.org/10.1038/nature05453
http://www.ncbi.nlm.nih.gov/pubmed/17151600
https://doi.org/10.1016/j.cell.2014.12.019
http://www.ncbi.nlm.nih.gov/pubmed/25594180
https://doi.org/10.1016/j.seizure.2018.12.007
http://www.ncbi.nlm.nih.gov/pubmed/30566897
https://doi.org/10.1016/j.jocn.2011.09.009
http://www.ncbi.nlm.nih.gov/pubmed/22273117
https://doi.org/10.1038/nmeth.3337
https://doi.org/10.1038/nmeth.3337
http://www.ncbi.nlm.nih.gov/pubmed/25822800
https://doi.org/10.1073/pnas.0813330106
https://doi.org/10.1073/pnas.0813330106
http://www.ncbi.nlm.nih.gov/pubmed/19234123
https://doi.org/10.1016/j.mito.2016.04.001
https://doi.org/10.1016/j.mito.2016.04.001
http://www.ncbi.nlm.nih.gov/pubmed/27079373
https://doi.org/10.1152/jn.90770.2008
http://www.ncbi.nlm.nih.gov/pubmed/18842951
https://doi.org/10.1073/pnas.1006214107
https://doi.org/10.1073/pnas.1006214107
http://www.ncbi.nlm.nih.gov/pubmed/20534480
https://doi.org/10.1172/JCI62923
https://doi.org/10.1172/JCI62923
https://doi.org/10.1002/ana.410390311
http://www.ncbi.nlm.nih.gov/pubmed/8602753
https://doi.org/10.1016/j.yebeh.2015.05.003
http://www.ncbi.nlm.nih.gov/pubmed/26162691
https://doi.org/10.1097/ALN.0000000000002528
https://doi.org/10.1097/ALN.0000000000002528
http://www.ncbi.nlm.nih.gov/pubmed/30707122
https://doi.org/10.1016/j.yebeh.2012.04.125
http://www.ncbi.nlm.nih.gov/pubmed/22835431
https://doi.org/10.1016/j.cmet.2011.01.010
http://www.ncbi.nlm.nih.gov/pubmed/21284986
https://doi.org/10.7554/eLife.47163


Sanz E, Yang L, Su T, Morris DR, McKnight GS, Amieux PS. 2009. Cell-type-specific isolation of ribosome-
associated mRNA from complex tissues. PNAS 106:13939–13944. DOI: https://doi.org/10.1073/pnas.
0907143106, PMID: 19666516

Sanz E, Quintana A, Deem JD, Steiner RA, Palmiter RD, McKnight GS. 2015. Fertility-regulating Kiss1 neurons
arise from hypothalamic POMC-expressing progenitors. Journal of Neuroscience 35:5549–5556. DOI: https://
doi.org/10.1523/JNEUROSCI.3614-14.2015, PMID: 25855171

Smeitink JA. 2003. Mitochondrial disorders: clinical presentation and diagnostic dilemmas. Journal of Inherited
Metabolic Disease 26:199–207. PMID: 12889661

Sofou K, De Coo IF, Isohanni P, Ostergaard E, Naess K, De Meirleir L, Tzoulis C, Uusimaa J, De Angst IB,
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