5,691 research outputs found
Robustness of Binary Black Hole Mergers in the Presence of Spurious Radiation
We present an investigation into how sensitive the last orbits and merger of
binary black hole systems are to the presence of spurious radiation in the
initial data. Our numerical experiments consist of a binary black hole system
starting the last couple of orbits before merger with additional spurious
radiation centered at the origin and fixed initial angular momentum. As the
energy in the added spurious radiation increases, the binary is invariably
hardened for the cases we tested, i.e. the merger of the two black holes is
hastened. The change in merger time becomes significant when the additional
energy provided by the spurious radiation increases the Arnowitt-Deser-Misner
(ADM) mass of the spacetime by about 1%. While the final masses of the black
holes increase due to partial absorption of the radiation, the final spins
remain constant to within our numerical accuracy. We conjecture that the
spurious radiation is primarily increasing the eccentricity of the orbit and
secondarily increasing the mass of the black holes while propagating out to
infinity.Comment: 12 pages, 12 figure
Explicit solution of the linearized Einstein equations in TT gauge for all multipoles
We write out the explicit form of the metric for a linearized gravitational
wave in the transverse-traceless gauge for any multipole, thus generalizing the
well-known quadrupole solution of Teukolsky. The solution is derived using the
generalized Regge-Wheeler-Zerilli formalism developed by Sarbach and Tiglio.Comment: 9 pages. Minor corrections, updated references. Final version to
appear in Class. Quantum Gra
An unexpected nitrate distribution in the tropical North Atlantic at 18°N, 30°W—implications for new production
During a R.V. Meteor JGOFS-NABE cruise to a tropical site in the northeast Atlantic in spring 1989, three different vertical regimes with respect to nitrate distribution and availability within the euphotic zone were observed. Besides dramatic variations in the depth of the nitracline, a previously undescribed nose-like nitrate maximum within the euphotic zone was the most prominent feature during this study. Both the vertical structure of phytoplankton biomass and the degree of absolute and relative new production were related to the depth of the nitracline, which in turn was dependent on the occurrence/non-occurrence of the subsurface subtropical salinity maximum (S(max)). The mesoscale variability of the nitracline depth, as indicated from a pre-survey grid, and published data on the frequent occurrence of the S(max) in tropical waters suggest higher variability of new production and F-ratio than usually expected for oligotrophic oceans. The importance of salt fingering and double diffusion for nitrate transport into the euphotic zone is discussed
High resolution pH measurements using a Lab-on-Chip sensor in surface waters of Northwest European shelf seas.
Abstract: Increasing atmospheric CO2 concentrations are resulting in a reduction in seawater pH, with potential detrimental consequences for marine organisms. Improved efforts are required to monitor the anthropogenically driven pH decrease in the context of natural pH variations. We present here a high resolution surface water pH data set obtained in summer 2011 in NorthWest European Shelf Seas. The aim of our paper is to demonstrate the successful deployment of the pH sensor, and discuss the carbonate chemistry dynamics of surface waters of Northwest European Shelf Seas using pH and ancillary data. The pH measurements were undertaken using spectrophotometry with a Lab-on-Chip pH sensor connected to the underway seawater supply of the ship. The main processes controlling the pH distribution along the ship’s transect, and their relative importance, were determined using a statistical approach. The pH sensor allowed 10 measurements h-1 with a precision of 0.001 pH units and a good agreement with pH calculated from a pair of discretely sampled carbonate variables dissolved inorganic carbon (DIC), total alkalinity (TA) and partial pressure of CO2 (pCO2) (e.g., pH, DIC, pCO2). For this summer cruise, the biological activity formed the main control on the pH distribution along the cruise transect. This study highlights the importance of high quality and high resolution pH measurements for the assessment of carbonate chemistry dynamics in marine waters
Ape duos and trios: spontaneous cooperation with free partner choice in chimpanzees
The purpose of the present study was to push the boundaries of cooperation among captive chimpanzees (Pan troglodytes). There has been doubt about the level of cooperation that chimpanzees are able to spontaneously achieve or understand. Would they, without any pre-training or restrictions in partner choice, be able to develop successful joint action? And would they be able to extend cooperation to more than two partners, as they do in nature? Chimpanzees were given a chance to cooperate with multiple partners of their own choosing. All members of the group (N = 11) had simultaneous access to an apparatus that required two (dyadic condition) or three (triadic condition) individuals to pull in a tray baited with food. Without any training, the chimpanzees spontaneously solved the task a total of 3,565 times in both dyadic and triadic combinations. Their success rate and efficiency increased over time, whereas the amount of pulling in the absence of a partner decreased, demonstrating that they had learned the task contingencies. They preferentially approached the apparatus when kin or nonkin of similar rank were present, showing a preference for socially tolerant partners. The forced partner combinations typical of cooperation experiments cannot reveal these abilities, which demonstrate that in the midst of a complex social environment, chimpanzees spontaneously initiate and maintain a high level of cooperative behavior
Community transcriptomics reveals universal patterns of protein sequence conservation in natural microbial communities
Background
Combined metagenomic and metatranscriptomic datasets make it possible to study the molecular evolution of diverse microbial species recovered from their native habitats. The link between gene expression level and sequence conservation was examined using shotgun pyrosequencing of microbial community DNA and RNA from diverse marine environments, and from forest soil.
Results
Across all samples, expressed genes with transcripts in the RNA sample were significantly more conserved than non-expressed gene sets relative to best matches in reference databases. This discrepancy, observed for many diverse individual genomes and across entire communities, coincided with a shift in amino acid usage between these gene fractions. Expressed genes trended toward GC-enriched amino acids, consistent with a hypothesis of higher levels of functional constraint in this gene pool. Highly expressed genes were significantly more likely to fall within an orthologous gene set shared between closely related taxa (core genes). However, non-core genes, when expressed above the level of detection, were, on average, significantly more highly expressed than core genes based on transcript abundance normalized to gene abundance. Finally, expressed genes showed broad similarities in function across samples, being relatively enriched in genes of energy metabolism and underrepresented by genes of cell growth.
Conclusions
These patterns support the hypothesis, predicated on studies of model organisms, that gene expression level is a primary correlate of evolutionary rate across diverse microbial taxa from natural environments. Despite their complexity, meta-omic datasets can reveal broad evolutionary patterns across taxonomically, functionally, and environmentally diverse communities.Gordon and Betty Moore FoundationAgouron InstituteNational Science Foundation (U.S.)Center for Microbial Oceanography: Research and Educatio
The Near-Linear Regime of Gravitational Waves in Numerical Relativity
We report on a systematic study of the dynamics of gravitational waves in
full 3D numerical relativity. We find that there exists an interesting regime
in the parameter space of the wave configurations: a near-linear regime in
which the amplitude of the wave is low enough that one expects the geometric
deviation from flat spacetime to be negligible, but nevertheless where
nonlinearities can excite unstable modes of the Einstein evolution equations
causing the metric functions to evolve out of control. The implications of this
for numerical relativity are discussed.Comment: 10 pages, 2 postscript figures, revised tex
Microbial community structure and function on sinking particles in the North Pacific Subtropical Gyre
Sinking particles mediate the transport of carbon and energy to the deep-sea, yet the specific microbes associated with sedimenting particles in the ocean's interior remain largely uncharacterized. In this study, we used particle interceptor traps (PITs) to assess the nature of particle-associated microbial communities collected at a variety of depths in the North Pacific Subtropical Gyre. Comparative metagenomics was used to assess differences in microbial taxa and functional gene repertoires in PITs containing a preservative (poisoned traps) compared to preservative-free traps where growth was allowed to continue in situ (live traps). Live trap microbial communities shared taxonomic and functional similarities with bacteria previously reported to be enriched in dissolved organic matter (DOM) microcosms (e.g., Alteromonas and Methylophaga), in addition to other particle and eukaryote-associated bacteria (e.g., Flavobacteriales and Pseudoalteromonas). Poisoned trap microbial assemblages were enriched in Vibrio and Campylobacterales likely associated with eukaryotic surfaces and intestinal tracts as symbionts, pathogens, or saprophytes. The functional gene content of microbial assemblages in poisoned traps included a variety of genes involved in virulence, anaerobic metabolism, attachment to chitinaceaous surfaces, and chitin degradation. The presence of chitinaceaous surfaces was also accompanied by the co-existence of bacteria which encoded the capacity to attach to, transport and metabolize chitin and its derivatives. Distinctly different microbial assemblages predominated in live traps, which were largely represented by copiotrophs and eukaryote-associated bacterial communities. Predominant sediment trap-assocaited eukaryotic phyla included Dinoflagellata, Metazoa (mostly copepods), Protalveolata, Retaria, and Stramenopiles. These data indicate the central role of eukaryotic taxa in structuring sinking particle microbial assemblages, as well as the rapid responses of indigenous microbial species in the degradation of marine particulate organic matter (POM) in situ in the ocean's interior.Gordon and Betty Moore Foundation (Grant 3777)Agouron Institute (AI-MO9.12.1)National Science Foundation (U.S.). Center for Microbial Oceanography: Research and Education (EF0424599)Simons Foundation (Award 329108)National Science Foundation (U.S.) (Postdoctoral Research Fellowship in Biology DBI-1202684
Simple Front End Electronics for Multigap Resistive Plate Chambers
A simple circuit for the presentation of the signals from Multi-gap Resistive
Plate Chambers (MRPCs) to standard existing digitization electronics is
described. The circuit is based on "off-the-shelf" discrete components. An
optimization of the values of specific components is required to match the
aspects of the MRPCs for the given application. This simple circuit is an
attractive option for the initial signal processing for MRPC prototyping and
bench- or beam-testing efforts, as well as for final implementations of
small-area Time-of-Flight systems with existing data acquisition systems.Comment: submitted to Nucl. Inst. and Methods, Section
Black hole head-on collisions and gravitational waves with fixed mesh-refinement and dynamic singularity excision
We present long-term-stable and convergent evolutions of head-on black hole
collisions and extraction of gravitational waves generated during the merger
and subsequent ring-down. The new ingredients in this work are the use of fixed
mesh-refinement and dynamical singularity excision techniques. We are able to
carry out head-on collisions with large initial separations and demonstrate
that our excision infrastructure is capable of accommodating the motion of the
individual black holes across the computational domain as well as their their
merger. We extract gravitational waves from these simulations using the
Zerilli-Moncrief formalism and find the ring-down radiation to be, as expected,
dominated by the l=2, m=0 quasi-normal mode. The total radiated energy is about
0.1 % of the total ADM mass of the system.Comment: Revised version, 1 figure added, accepted for publication in
Phys.Rev.D, 15 pages, 10 figures, revtex 4.
- …
