50 research outputs found

    Network Mendelian randomization: using genetic variants as instrumental variables to investigate mediation in causal pathways

    Get PDF
    Background: Mendelian randomization uses genetic variants, assumed to be instrumental variables for a particular exposure, to estimate the causal effect of that exposure on an outcome. If the instrumental variable criteria are satisfied, the resulting estimator is consistent even in the presence of unmeasured confounding and reverse causation. Methods: We extend the Mendelian randomization paradigm to investigate more complex networks of relationships between variables, in particular where some of the effect of an exposure on the outcome may operate through an intermediate variable (a mediator). If instrumental variables for the exposure and mediator are available, direct and indirect effects of the exposure on the outcome can be estimated, for example using either a regression-based method or structural equation models. The direction of effect between the exposure and a possible mediator can also be assessed. Methods are illustrated in an applied example considering causal relationships between body mass index, C-reactive protein and uric acid. Results: These estimators are consistent in the presence of unmeasured confounding if, in addition to the instrumental variable assumptions, the effects of both the exposure on the mediator and the mediator on the outcome are homogeneous across individuals and linear without interactions. Nevertheless, a simulation study demonstrates that even considerable heterogeneity in these effects does not lead to bias in the estimates. Conclusions: These methods can be used to estimate direct and indirect causal effects in a mediation setting, and have potential for the investigation of more complex networks between multiple interrelated exposures and disease outcomes

    Network Mendelian randomization: using genetic variants as instrumental variables to investigate mediation in causal pathways.

    Get PDF
    BACKGROUND: Mendelian randomization uses genetic variants, assumed to be instrumental variables for a particular exposure, to estimate the causal effect of that exposure on an outcome. If the instrumental variable criteria are satisfied, the resulting estimator is consistent even in the presence of unmeasured confounding and reverse causation. METHODS: We extend the Mendelian randomization paradigm to investigate more complex networks of relationships between variables, in particular where some of the effect of an exposure on the outcome may operate through an intermediate variable (a mediator). If instrumental variables for the exposure and mediator are available, direct and indirect effects of the exposure on the outcome can be estimated, for example using either a regression-based method or structural equation models. The direction of effect between the exposure and a possible mediator can also be assessed. Methods are illustrated in an applied example considering causal relationships between body mass index, C-reactive protein and uric acid. RESULTS: These estimators are consistent in the presence of unmeasured confounding if, in addition to the instrumental variable assumptions, the effects of both the exposure on the mediator and the mediator on the outcome are homogeneous across individuals and linear without interactions. Nevertheless, a simulation study demonstrates that even considerable heterogeneity in these effects does not lead to bias in the estimates. CONCLUSIONS: These methods can be used to estimate direct and indirect causal effects in a mediation setting, and have potential for the investigation of more complex networks between multiple interrelated exposures and disease outcomes

    Instrumental variable analysis with a nonlinear exposure-outcome relationship.

    Get PDF
    BACKGROUND: Instrumental variable methods can estimate the causal effect of an exposure on an outcome using observational data. Many instrumental variable methods assume that the exposure-outcome relation is linear, but in practice this assumption is often in doubt, or perhaps the shape of the relation is a target for investigation. We investigate this issue in the context of Mendelian randomization, the use of genetic variants as instrumental variables. METHODS: Using simulations, we demonstrate the performance of a simple linear instrumental variable method when the true shape of the exposure-outcome relation is not linear. We also present a novel method for estimating the effect of the exposure on the outcome within strata of the exposure distribution. This enables the estimation of localized average causal effects within quantile groups of the exposure or as a continuous function of the exposure using a sliding window approach. RESULTS: Our simulations suggest that linear instrumental variable estimates approximate a population-averaged causal effect. This is the average difference in the outcome if the exposure for every individual in the population is increased by a fixed amount. Estimates of localized average causal effects reveal the shape of the exposure-outcome relation for a variety of models. These methods are used to investigate the relations between body mass index and a range of cardiovascular risk factors. CONCLUSIONS: Nonlinear exposure-outcome relations should not be a barrier to instrumental variable analyses. When the exposure-outcome relation is not linear, either a population-averaged causal effect or the shape of the exposure-outcome relation can be estimated.The EPIC-InterAct study received funding from the European Union (Integrated Project LSHM-CT-2006-037197 in the Framework Programme 6 of the European Community).This is the final published version. It first appeared at http://journals.lww.com/epidem/pages/articleviewer.aspx?year=2014&issue=11000&article=00014&type=abstract

    Using published data in Mendelian randomization: a blueprint for efficient identification of causal risk factors.

    Get PDF
    Finding individual-level data for adequately-powered Mendelian randomization analyses may be problematic. As publicly-available summarized data on genetic associations with disease outcomes from large consortia are becoming more abundant, use of published data is an attractive analysis strategy for obtaining precise estimates of the causal effects of risk factors on outcomes. We detail the necessary steps for conducting Mendelian randomization investigations using published data, and present novel statistical methods for combining data on the associations of multiple (correlated or uncorrelated) genetic variants with the risk factor and outcome into a single causal effect estimate. A two-sample analysis strategy may be employed, in which evidence on the gene-risk factor and gene-outcome associations are taken from different data sources. These approaches allow the efficient identification of risk factors that are suitable targets for clinical intervention from published data, although the ability to assess the assumptions necessary for causal inference is diminished. Methods and guidance are illustrated using the example of the causal effect of serum calcium levels on fasting glucose concentrations. The estimated causal effect of a 1 standard deviation (0.13 mmol/L) increase in calcium levels on fasting glucose (mM) using a single lead variant from the CASR gene region is 0.044 (95 % credible interval -0.002, 0.100). In contrast, using our method to account for the correlation between variants, the corresponding estimate using 17 genetic variants is 0.022 (95 % credible interval 0.009, 0.035), a more clearly positive causal effect.We thank all EPIC participants and staff for their contribution to the study. We thank staff from the Technical, Field Epidemiology and Data Functional Group Teams of the MRC Epidemiology Unit in Cambridge, UK, for carrying out sample preparation, DNA provision and quality control, genotyping and data-handling work. Funding for the biomarker measurements in the random subcohort was provided by grants to EPIC-InterAct from the European Community Framework Programme 6 (Integrated Project LSHM-CT-2006-037197) and to EPIC-Heart from the Medical Research Council and British Heart Foundation (Joint Award G0800270). Stephen Burgess is supported by the Wellcome Trust (Grant Number 100114). Simon G. Thompson is supported by the British Heart Foundation (Grant Number CH/12/2/29428). No specific funding was received for the writing of this manuscript.This is the final version of the article. It first appeared from Springer via http://dx.doi.org/10.1007/s10654-015-0011-

    A method making fewer assumptions gave the most reliable estimates of exposure-outcome associations in stratified case-cohort studies.

    Get PDF
    OBJECTIVE: A case-cohort study is an efficient epidemiological study design for estimating exposure-outcome associations. When sampling of the subcohort is stratified, several methods of analysis are possible, but it is unclear how they compare. Our objective was to compare five analysis methods using Cox regression for this type of data, ranging from a crude model that ignores the stratification to a flexible one that allows nonproportional hazards and varying covariate effects across the strata. STUDY DESIGN AND SETTING: We applied the five methods to estimate the association between physical activity and incident type 2 diabetes using data from a stratified case-cohort study and also used artificial data sets to exemplify circumstances in which they can give different results. RESULTS: In the diabetes study, all methods except the method that ignores the stratification gave similar results for the hazard ratio associated with physical activity. In the artificial data sets, the more flexible methods were shown to be necessary when certain assumptions of the simpler models failed. The most flexible method gave reliable results for all the artificial data sets. CONCLUSION: The most flexible method is computationally straightforward, and appropriate whether or not key assumptions made by the simpler models are valid.EJ, MJS and SGT were supported in part by the UK Medical Research Council and the British Heart Foundation. SJS was supported by the UK Medical Research Council [Unit Programme number MC_UU_12015/1]. The EPIC-InterAct study was funded by the EU FP6 programme (LSHM_CT_2006_037197).This is the final version of the article. It was first available from Elsevier via http://dx.doi.org/10.1016/j.jclinepi.2015.04.00

    Discovery of rare variants associated with blood pressure regulation through meta-analysis of 1.3 million individuals

    Get PDF
    Genetic studies of blood pressure (BP) to date have mainly analyzed common variants (minor allele frequency > 0.05). In a meta-analysis of up to ~1.3 million participants, we discovered 106 new BP-associated genomic regions and 87 rare (minor allele frequency ≤ 0.01) variant BP associations (P < 5 × 10−8), of which 32 were in new BP-associated loci and 55 were independent BP-associated single-nucleotide variants within known BP-associated regions. Average effects of rare variants (44% coding) were ~8 times larger than common variant effects and indicate potential candidate causal genes at new and known loci (for example, GATA5 and PLCB3). BP-associated variants (including rare and common) were enriched in regions of active chromatin in fetal tissues, potentially linking fetal development with BP regulation in later life. Multivariable Mendelian randomization suggested possible inverse effects of elevated systolic and diastolic BP on large artery stroke. Our study demonstrates the utility of rare-variant analyses for identifying candidate genes and the results highlight potential therapeutic targets. © 2020, The Author(s), under exclusive licence to Springer Nature America, Inc. There are 286 authors of this articles not all are listed in this record

    Associations between Potentially Modifiable Risk Factors and Alzheimer Disease: A Mendelian Randomization Study.

    Get PDF
    BACKGROUND: Potentially modifiable risk factors including obesity, diabetes, hypertension, and smoking are associated with Alzheimer disease (AD) and represent promising targets for intervention. However, the causality of these associations is unclear. We sought to assess the causal nature of these associations using Mendelian randomization (MR). METHODS AND FINDINGS: We used SNPs associated with each risk factor as instrumental variables in MR analyses. We considered type 2 diabetes (T2D, NSNPs = 49), fasting glucose (NSNPs = 36), insulin resistance (NSNPs = 10), body mass index (BMI, NSNPs = 32), total cholesterol (NSNPs = 73), HDL-cholesterol (NSNPs = 71), LDL-cholesterol (NSNPs = 57), triglycerides (NSNPs = 39), systolic blood pressure (SBP, NSNPs = 24), smoking initiation (NSNPs = 1), smoking quantity (NSNPs = 3), university completion (NSNPs = 2), and years of education (NSNPs = 1). We calculated MR estimates of associations between each exposure and AD risk using an inverse-variance weighted approach, with summary statistics of SNP-AD associations from the International Genomics of Alzheimer's Project, comprising a total of 17,008 individuals with AD and 37,154 cognitively normal elderly controls. We found that genetically predicted higher SBP was associated with lower AD risk (odds ratio [OR] per standard deviation [15.4 mm Hg] of SBP [95% CI]: 0.75 [0.62-0.91]; p = 3.4 × 10(-3)). Genetically predicted higher SBP was also associated with a higher probability of taking antihypertensive medication (p = 6.7 × 10(-8)). Genetically predicted smoking quantity was associated with lower AD risk (OR per ten cigarettes per day [95% CI]: 0.67 [0.51-0.89]; p = 6.5 × 10(-3)), although we were unable to stratify by smoking history; genetically predicted smoking initiation was not associated with AD risk (OR = 0.70 [0.37, 1.33]; p = 0.28). We saw no evidence of causal associations between glycemic traits, T2D, BMI, or educational attainment and risk of AD (all p > 0.1). Potential limitations of this study include the small proportion of intermediate trait variance explained by genetic variants and other implicit limitations of MR analyses. CONCLUSIONS: Inherited lifetime exposure to higher SBP is associated with lower AD risk. These findings suggest that higher blood pressure--or some environmental exposure associated with higher blood pressure, such as use of antihypertensive medications--may reduce AD risk.We thank the International Genomics of Alzheimer's Project (IGAP) for providing summary results data for these analyses. The investigators within IGAP contributed to the design and implementation of IGAP and/or provided data but did not participate in analysis or writing of this report. IGAP was made possible by the generous participation of the control subjects, the patients, and their families. The i–Select chips were funded by the French National Foundation on Alzheimer's disease and related disorders. EADI was supported by the LABEX (laboratory of excellence program investment for the future) DISTALZ grant, Inserm, Institut Pasteur de Lille, Université de Lille 2 and the Lille University Hospital. GERAD was supported by the Medical Research Council (Grant n° 503480), Alzheimer's Research UK (Grant n° 503176), the Wellcome Trust (Grant n° 082604/2/07/Z) and German Federal Ministry of Education and Research (BMBF): Competence Network Dementia (CND) grant n° 01GI0102, 01GI0711, 01GI0420. CHARGE was partly supported by the NIH/NIA grant R01 AG033193 and the NIA AG081220 and AGES contract N01–AG–12100, the NHLBI grant R01 HL105756, the Icelandic Heart Association, and the Erasmus Medical Center and Erasmus University. ADGC was supported by the NIH/NIA grants: U01 AG032984, U24 AG021886, U01 AG016976, and the Alzheimer's Association grant ADGC–10–196728.This is the final version of the article. It first appeared from PLOS via http://dx.doi.org/10.1371/journal.pmed.100184

    Common genetic variants highlight the role of insulin resistance and body fat distribution in type 2 diabetes, independent of obesity.

    Get PDF
    We aimed to validate genetic variants as instruments for insulin resistance and secretion, to characterize their association with intermediate phenotypes, and to investigate their role in type 2 diabetes (T2D) risk among normal-weight, overweight, and obese individuals. We investigated the association of genetic scores with euglycemic-hyperinsulinemic clamp- and oral glucose tolerance test-based measures of insulin resistance and secretion and a range of metabolic measures in up to 18,565 individuals. We also studied their association with T2D risk among normal-weight, overweight, and obese individuals in up to 8,124 incident T2D cases. The insulin resistance score was associated with lower insulin sensitivity measured by M/I value (β in SDs per allele [95% CI], -0.03 [-0.04, -0.01]; P = 0.004). This score was associated with lower BMI (-0.01 [-0.01, -0.0]; P = 0.02) and gluteofemoral fat mass (-0.03 [-0.05, -0.02; P = 1.4 × 10(-6)) and with higher alanine transaminase (0.02 [0.01, 0.03]; P = 0.002) and γ-glutamyl transferase (0.02 [0.01, 0.03]; P = 0.001). While the secretion score had a stronger association with T2D in leaner individuals (Pinteraction = 0.001), we saw no difference in the association of the insulin resistance score with T2D among BMI or waist strata (Pinteraction > 0.31). While insulin resistance is often considered secondary to obesity, the association of the insulin resistance score with lower BMI and adiposity and with incident T2D even among individuals of normal weight highlights the role of insulin resistance and ectopic fat distribution in T2D, independently of body size.The MRC-Ely Study was funded by the Medical Research Council (MC_U106179471) and Diabetes UK. We are grateful to all the volunteers, and to the staff of St. Mary’s Street Surgery, Ely and the study team. The Fenland Study is funded by the Medical Research Council (MC_U106179471) and Wellcome Trust. We are grateful to all the volunteers for their time and help, and to the General Practitioners and practice staff for assistance with recruitment. We thank the Fenland Study Investigators, Fenland Study Co-ordination team and the Epidemiology Field, Data and Laboratory teams. DBS and RKS are funded by the Wellcome Trust, the U.K. NIHR Cambridge Biomedical Research Centre and the MRC Centre for Obesity and Related Metabolic Disease. Genotyping in ULSAM was performed by the SNP&SEQ Technology Platform in Uppsala (www.genotyping.se), which is supported by Uppsala University, Uppsala University Hospital, Science for Life Laboratory - Uppsala and the Swedish Research Council (Contracts 80576801 and 70374401). The RISC Study was supported by European Union grant QLG1-CT-2001-01252 and AstraZeneca. The RISC Study Project Management Board: B Balkau, F Bonnet, SW Coppack, JM Dekker, E Ferrannini, A Golay, A Mari, A Natali, J Petrie, M Walker. We thank all EPIC participants and staff for their contribution to the study. We thank the lab team at the MRC Epidemiology Unit for sample management and Nicola Kerrison of the MRC Epidemiology Unit for data management. Funding for the EPIC-InterAct project was provided by the EU FP6 programme (grant number LSHM_CT_2006_037197).In addition, EPIC-InterAct investigators acknowledge funding from the following agencies: PWF: Swedish Research Council, Novo Nordisk, Swedish Diabetes Association, Swedish Heart-Lung Foundation; LCG: Swedish Research Council; NS: Health Research Fund (FIS) of the Spanish Ministry of Health; Murcia Regional Government (Nº 6236); LA: We thank the participants of the Spanish EPIC cohort for their contribution to the study as well as to the team of trained nurses who participated in the recruitment; RK: German Cancer Aid, German Ministry of Research (BMBF); TJK: Cancer Research UK; PMN: Swedish Research Council; KO: Danish Cancer Society; SP: Compagnia di San Paolo; JRQ: Asturias Regional Government; OR: The Västerboten County Council; AMWS and DLvdA: Dutch Ministry of Public Health, Welfare and Sports (VWS), Netherlands Cancer Registry (NKR), LK Research Funds, Dutch Prevention Funds, Dutch ZON (Zorg Onderzoek Nederland), World Cancer Research Fund (WCRF), Statistics Netherlands; RT: AIRE-ONLUS Ragusa, AVIS-Ragusa, Sicilian Regional Government; IS: Verification of diabetes cases was additionally funded by NL Agency grant IGE05012 and an Incentive Grant from the Board of the UMC Utrecht; IB: Wellcome Trust grant 098051 and United Kingdom NIHR Cambridge Biomedical Research Centre; MIM: InterAct, Wellcome Trust (083270/Z/07/Z), MRC (G0601261); ER: Imperial College Biomedical Research.This is the author accepted manuscript. The final version is available from the American Diabetes Association via http://dx.doi.org/10.2337/db14-031

    Genomic analysis of diet composition finds novel loci and associations with health and lifestyle

    Get PDF
    We conducted genome-wide association studies (GWAS) of relative intake from the macronutrients fat, protein, carbohydrates, and sugar in over 235,000 individuals of European ancestries. We identified 21 unique, approximately independent lead SNPs. Fourteen lead SNPs are uniquely associated with one macronutrient at genome-wide significance (P < 5 x 10(-8)), while five of the 21 lead SNPs reach suggestive significance (P < 1 x 10(-5)) for at least one other macronutrient. While the phenotypes are genetically correlated, each phenotype carries a partially unique genetic architecture. Relative protein intake exhibits the strongest relationships with poor health, including positive genetic associations with obesity, type 2 diabetes, and heart disease (r(g) approximate to 0.15-0.5). In contrast, relative carbohydrate and sugar intake have negative genetic correlations with waist circumference, waist-hip ratio, and neighborhood deprivation (|r(g)| approximate to 0.1-0.3) and positive genetic correlations with physical activity (r(g) approximate to 0.1 and 0.2). Relative fat intake has no consistent pattern of genetic correlations with poor health but has a negative genetic correlation with educational attainment (r(g) approximate to-0.1). Although our analyses do not allow us to draw causal conclusions, we find no evidence of negative health consequences associated with relative carbohydrate, sugar, or fat intake. However, our results are consistent with the hypothesis that relative protein intake plays a role in the etiology of metabolic dysfunction.Public Health and primary carePrevention, Population and Disease management (PrePoD
    corecore