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A method making fewer assumptions gave the most reliable estimates
of exposureeoutcome associations in stratified caseecohort studies
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Abstract
Objective: A caseecohort study is an efficient epidemiological study design for estimating exposureeoutcome associations. When
sampling of the subcohort is stratified, several methods of analysis are possible, but it is unclear how they compare. Our objective was
to compare five analysis methods using Cox regression for this type of data, ranging from a crude model that ignores the stratification
to a flexible one that allows nonproportional hazards and varying covariate effects across the strata.

Study Design and Setting: We applied the five methods to estimate the association between physical activity and incident type 2 dia-
betes using data from a stratified caseecohort study and also used artificial data sets to exemplify circumstances in which they can give
different results.

Results: In the diabetes study, all methods except the method that ignores the stratification gave similar results for the hazard ratio
associated with physical activity. In the artificial data sets, the more flexible methods were shown to be necessary when certain assumptions
of the simpler models failed. The most flexible method gave reliable results for all the artificial data sets.

Conclusion: The most flexible method is computationally straightforward, and appropriate whether or not key assumptions made by the
simpler models are valid. � 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).
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1. Introduction

A caseecohort study is nested within a prospective
cohort study and is an efficient design because full covariate
data are only gathered on the cases (participants who have
an event during the follow-up period) and the subcohort.
The subcohort is a randomly selected subset of the full
cohort at baseline and therefore includes some future inci-
dent cases. The proportion of the cohort selected to be in
the subcohort is called the sampling fraction. Obtaining data
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on the full cohort can be expensive, for example if bio-
markers or DNA from blood samples are required, so the
caseecohort design is more cost-effective than the full
cohort study, especially when the event of interest is rare.
Another advantage of the caseecohort design is that the
same subcohort can be used to study multiple disease out-
comes, though if exposures corresponding to different case
definitions are measured at different times then batch effects
might be a problem.

The selection of the subcohort is sometimes stratified on
one or more covariates that are available in all cohort mem-
bers, to improve efficiency or achieve a similar distribution
of these covariates between the cases and the subcohort.
The cohort is divided into strata, each with a potentially
different sampling fraction for selecting participants to be
in the subcohort. For data from this type of study, Borgan
et al. [1] described how to fit a Cox proportional hazards
model, for estimating exposureeoutcome associations, in
a way that aims to account for the stratified design. Recent
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What is new?

Key findings
� This article compares five ways of analyzing strat-

ified caseecohort studies, using data from the
EPIC-InterAct study and artificial data sets. A
two-stage Cox model with random-effect meta-
analysis gave the most reliable results in the widest
variety of scenarios and is a flexible model that
makes fewer assumptions than the other models
investigated.

� Three different estimators to account for the strat-
ified caseecohort design were investigated in com-
bination with the proposed models. All estimators
performed poorly when the stratification was not
incorporated in the model.

What this adds to what was known
� This article provides a detailed comparison and

discussion of different analysis methods for strati-
fied caseecohort studies, which is lacking in the
existing literature. It presents the assumptions,
together with the advantages and disadvantages
of each proposed model, and makes recommenda-
tions for epidemiologists and applied statisticians
who want to analyze data from studies with this
design.

What is the implication and what should change
now?
� A flexible two-stage Cox model with random-effect

meta-analysis should be routinely considered for
analyzing stratified caseecohort studies where the
strata may be confounding the exposureeoutcome
relationship. Combined with a Prentice estimator,
this approach provides reliable results and is gener-
ally recommended. An exceptionmay bewhen there
are very few events or strata that may lead to diffi-
culties in fitting the two-stage random-effect model.
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articles [2,3] mentioned only this method, but there are
several other possibilities. In this article we describe five
models, apply them to a caseecohort study, compare their
performance using artificial data, and discuss their advan-
tages and disadvantages.

We first describe approaches used to fit a Cox model to
caseecohort data from an unstratified study, since these
form the basis of the five methods for stratified studies,
which we describe next. We apply the methods for stratified
studies to data from the EPIC-InterAct study [4] (hereafter
known as InterAct), which is a stratified caseecohort study
of incident type 2 diabetes in 26 centers across Europe. We
then use artificial data sets to show how the five methods
can give different results. Finally, we discuss these findings
and make recommendations for researchers analyzing data
from stratified caseecohort studies.
2. Methods for unstratified caseecohort studies

We first review the use of Cox regression models [5] to
analyze data from an unstratified caseecohort study, where
the subcohort has been selected by simple random sampling
(each participant has equal probability of being in the sub-
cohort). If participant i has exposure of interest xi with
associated log hazard ratio b, and confounder zi with log
hazard ratio g, then the model for the hazard function is
hiðtÞ5h0ðtÞ expðbxi þ gziÞ:

The baseline hazard h0ðtÞ is common to all participants.

If there is more than one confounder, then g and zi are vec-
tors and gzi is replaced by gTzi.

In a full cohort study, the partial likelihood function would
be maximized to estimate b [5]. In a caseecohort study, this is
not possible, because xi and zi are only known for the cases and
members of the subcohort. The partial likelihood function is
therefore approximated by a pseudolikelihood, of which
several versions have been proposed that correspond to slightly
different estimators. Simulations have shown that the estimator
of Prentice [6] leads to estimates ofb and its standard error that
most closely resemble those that would have been obtained
from the corresponding full cohort study [7]. Prentice’s esti-
mator alsohasdesirable asymptotic properties [8].Onealterna-
tive is the estimator of Barlow [9], which, unlike Prentice’s,
directly involves the sampling fraction and approximates the
likelihood from the full cohort study. These two estimators
are explained in detail in Appendix A, in the supplementary
material at www.jclinepi.com.

Kim [10] has recently carried out a more thorough com-
parison of estimators for caseecohort data using simulated
data sets. He found that inverse probability weighting esti-
mators are the most powerful, but overall the differences
between estimators are small when the proportion of cases
in the full cohort is less than 10% and negligible when it is
less than 1%. The differences also decrease as the size of
the data set (the number of observations) increases.

For caseecohort data, the asymptotic theory for vari-
ances in the standard Cox model does not hold [6], and it
is necessary to use ‘‘robust’’ variance estimates [9,11,12].
The assumption of proportional hazards can be checked
by adding to the model an interaction between a baseline
covariate and the underlying timescale, or by using an
adaptation of Schoenfeld residuals [13].
3. Methods for stratified caseecohort studies

We now describe methods for analyzing data from a strat-
ified caseecohort study. Each stratum has its own sampling

http://www.jclinepi.com


1399E. Jones et al. / Journal of Clinical Epidemiology 68 (2015) 1397e1405
fraction, andwithin a stratum each participant has equal prob-
ability of being selected to be in the subcohort. For ease of
exposition we will refer to the strata as centers, since this is
a common form of stratification in practice, but the strata
can also be defined in terms of one or more other covariates,
for example a correlate of the exposure (see the last paragraph
of the discussion).

Suppose that participant i in center j has exposure xij and
confounder(s) zij, and the log hazard ratios corresponding to
the exposure and confounder(s) are b and g respectively.
We describe five Cox regression models of increasing
complexity for exposureeoutcome associations in a strati-
fied caseecohort study and methods for estimating their
parameters.

Model I

Single Cox model, with center not included in the
model:
hijðtÞ5h0ðtÞ exp
�
bxij þ gzij

�
:

The parameters of this model can be estimated using the
estimators of (a) Prentice, (b) Barlow, or (c) Borgan (esti-
mator III in [1]). Estimator (c) is specially intended for
the purpose of fitting an unstratified Cox model to data
from a stratified caseecohort study. Estimators (a) and
(b) are not expected to be appropriate, whereas (c) is
formally correct but computationally complex and has only
recently become available in standard software. For (c), the
usual robust variance estimator is not valid, so an asymp-
totic estimator is used instead [11].

Model II

Single unstratified Cox model, including center as a cat-
egorical covariate:
hijðtÞ5h0ðtÞ exp
�
bxij þ gzij þ dj

�
:

This model assumes proportional hazards between the
different centers, with dj representing the log hazard ratio
for center j relative to center 1 (so that d150). The three es-
timators used for Model I can also be used for Model II.

Model III

Single Cox model with the baseline hazard stratified by
center:
hijðtÞ5h0jðtÞ exp
�
bxij þ gzij

�
:

This model does not assume proportional hazards be-
tween the centers. Instead it gives each center j its own
baseline hazard h0jðtÞ. Prentice’s and Barlow’s estimators
can be used. The pseudolikelihood for Barlow’s estimator
is similar to the pseudolikelihood for Borgan’s estimator,
so in this article we use Barlow’s estimator with Models I
and II to compare it with Borgan’s.
Model IV

Separate Cox model for each center, assuming a
common log hazard ratio for the exposure in all centers:
hijðtÞ5h0jðtÞ exp
�
bxij þgjzij

�
:

This model allows the confounder effects to vary be-
tween centers, as represented by the parameters gj. The
data can be analyzed by a two-stage method: first fit a sepa-
rate Cox model to each center, using Prentice’s estimator;
then combine the estimates of b using fixed-effect meta-
analysis. This model could also be fitted by a one-stage
method, with a single pseudolikelihood for the whole data
set, by including interaction terms between the center vari-
ables and the confounder(s).

Model V

Separate Cox model for each center, with each center
having its own log hazard ratio for the exposure, and these
log hazard ratios following a normal distribution:
hijðtÞ5h0jðtÞ exp
�
bjxij þ gjzij

�

bj |N
�
b;t2

�
:

Here t2 is the between-study variance of the true center-
specific log hazard ratios. This extends Model IV to allow
the exposureeoutcome association to vary between centers;
b is now the average log hazard ratio. The model parame-
ters can be estimated using the same two-stage approach as
for Model IV but with random-effect (instead of fixed-
effect) meta-analysis. In our analyses we used a moment
estimator of t2 [14]. Model V could also be fitted as a
one-stage random-effects model, but this is computation-
ally difficult for survival models and results have been
shown to be very similar between one-stage and two-
stage models [15].

The assumptions each model makes about the exposure
effect, center effects, and confounder effect(s) are summa-
rized in Table 1, and software functions for them are
described in Appendix B.
4. Application of the models to InterAct

InterAct is a multicenter caseecohort study of incident
type 2 diabetes nested within the EPIC-Europe cohort
(EPIC is the European Prospective Investigation of Cancer
and Nutrition) [4,16]. The cohort from which the InterAct
cases and subcohort members were sampled consisted of
340,234 participants, recruited from 1993 to 1999; this
was smaller than the full EPIC-Europe cohort because
blood samples were unavailable for some EPIC-Europe
participants and because two of its countries did not partic-
ipate in InterAct. The subcohort selection for InterAct was



Table 1. Summary of assumptions about the effects of exposure, centers, and confounder(s), in five models for data from stratified caseecohort
studies

Model Exposure effect Center effects Confounder effect(s)

I Same in all centers Not included in the model Same in all centers
II Same in all centers Proportional effect in each center Same in all centers
III Same in all centers Each center has its own baseline hazard Same in all centers
IV Same in all centers Each center has its own baseline hazard Varies by center
V Varies by center Each center has its own baseline hazard Varies by center

Proportional hazards are assumed for all exposure and confounder effects.

1400 E. Jones et al. / Journal of Clinical Epidemiology 68 (2015) 1397e1405
stratified by center, except in France, which was a single
stratum (due to the small number of participants in each
center in that country). We therefore regard France as a sin-
gle center, so there are 21 centers in our analysis. In each
center, the sampling fraction was chosen to be approxi-
mately 0.5e1% higher than the estimated baseline preva-
lence of type 2 diabetes in that center’s population.

We estimate the association between self-reported
physical activity and incident type 2 diabetes using data
from InterAct and the five models previously described.
This association has already been investigated and re-
ported elsewhere [17]; here the same data are used to
explore how the five different methods for stratified casee
cohort data perform. Table 2 provides an overview of
Table 2. Summary statistics for the centers in the InterAct study

Center
Sampling

fraction (%) Size of caseecohort seta Size of s

France 2.86 867
Italy

Florence 4.07 931
Varese 3.12 601
Ragusa 5.72 597
Turin 5.38 858
Naples 4.41 406

Spain
Asturias 9.69 1,287
Granada 8.43 815
Murcia 10.48 1,264
Navarra 10.42 1,286
San Sebastian 9.54 1,237

UK
Cambridge 4.44 1,747
Oxford 2.59 577

Netherlands
Bilthoven 3.08 879
Utrecht 5.63 1,411

Germany
Heidelberg 3.93 1,618
Potsdam 4.82 1,960 1,

Sweden
Malmo 7.09 3,556 1,
Umea 4.08 1,845 1,

Denmark
Aarhus 3.91 1,265
Copenhagen 3.83 2,772 1,

Total/overall 4.92 27,779 16,

a The size of the caseecohort set is not equal to the size of the subcohor
and non-cases.

b Percentage of participants with physical activity (PA) 5 3 or 4, mean
InterAct. Sampling fractions ranged from 2.6% to 10.5%
across the centers. Physical activity was self-reported as
1 (inactive), 2 (moderately inactive), 3 (moderately
active), or 4 (active) and included in the models as a
continuous variable. The only confounder included was
sex. In all models we used age in years as the timescale,
as recommended for observational studies [18]. Borgan’s
estimator assumes there are no tied events, so tied
event-times were changed by up to 0.01 days. Deaths from
any cause were regarded as censored observations.

The results of applying Models IeV to the InterAct data
are shown in Fig. 1. Greater physical activity is associated
with a lower risk of diabetes. For most of the models and
estimators the hazard ratios for physical activity are very
ubcohort Number of cases
Percent with high
PA (subcohort)b

Percent male
(subcohort)

588 288 44.0 0.00

544 400 35.8 23.35
364 246 30.8 20.60
341 271 32.3 46.63
548 327 44.0 57.30
222 193 10.8 0.00

791 557 28.6 38.81
529 318 14.6 20.60
761 549 25.5 31.80
776 581 36.1 47.42
731 559 36.4 46.65

989 787 38.3 42.77
340 238 45.3 27.06

579 316 69.8 48.53
924 512 64.7 0.00

870 780 55.9 44.71
184 804 40.8 39.53

929 1,757 39.7 40.38
015 865 47.7 48.87

665 640 57.1 52.48
464 1,415 61.1 54.10

154 12,403 43.4 37.83

t plus the number of cases, because the subcohort contains both cases

ing ‘‘moderately active’’ or ‘‘active.’’



Fig. 1. Estimates and 95% confidence intervals of the hazard ratio for
diabetes per one-category increase in self-reported physical activity,
using data from InterAct and Models IeV. Models I and II use the es-
timators of (a) Prentice, (b) Barlow, and (c) Borgan. Models III, IV,
and V use only Prentice’s estimator.
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similar. The only exceptions are the Barlow and Borgan es-
timators with Model I, which ignores center effects. The
slightly lower estimates for Models IV and V indicate
possible differential confounding by sex across centers.
The wider confidence interval for Model V reflects the fact
that there is heterogeneity in the hazard ratio across centers.

For the methods that use the Prentice estimator, the
assumption of proportional hazards was tested by adding
to the models an interaction between physical activity and
the underlying timescale (age). In Models IV and V,
meta-analyses of the interaction parameter estimates across
centers were then performed [19]. The interaction terms
were not statistically significant (P O 0.5 in all models).
A test of proportional hazards between the 21 centers in
Model II yielded c2

20 5 159.0 (P ! 0.001), suggesting that
Models IIIeV should be preferable.

The published investigation of physical activity and inci-
dent type 2 diabetes [17] used Model V and found that the
hazard ratio for a one-category increase in physical activity
was 0.87 in men (with 95% confidence interval 0.80, 0.94)
and 0.93 in women (0.89, 0.98). As well as analyzing the
sexes separately, these analyses used more covariates and
a different grouping of the centers, so the results are not
directly comparable with those reported here.

5. Comparisons of the models using artificial data sets

Given the general similarity of the results for Models
IeV found above, we next used artificial data sets to
demonstrate circumstances in which the five models give
different estimates of an exposureeoutcome association.
For each consecutive pair of models, we created an artificial
data set from the more complex of the two models and then
estimated the log hazard ratio using both models. A model
was deemed to have estimated the hazard ratio accurately if
the 95% confidence interval contained the true value. A set
of four ‘‘realistic’’ data sets was created with specifications
(size, sampling fractions, effect sizes, etc.) similar to the
InterAct study. A set of four smaller ‘‘extreme’’ data sets
was also created to show clearly the differences between
the models.

We used a normally distributed exposure and a single
binary-valued confounder. As above the strata for subcohort
selection are referred to as ‘‘centers.’’ As far as possible, the
same specifications were used for multiple data sets. The
specifications are shown in Table 3 and computer code for
generating the data is given in Appendix B. For Models I
and II,we used only estimators (a) and (c), and for all data sets
we also used Model V.

For all data sets the true value of the exposure hazard ratio
was 1.5. The data sets for Models IV/V had different expo-
sure hazard ratios in each center, but these were chosen so
that the mean of the bj’s (see section 3) was log 1:5. Fig. 2
shows the estimated hazard ratios per unit increase in the
exposure, and 95% confidence intervals, obtained from
fitting the relevant pair of models to each data set. For the
extreme data sets, the confidence intervals from the simpler
models do not contain the true value of 1.5, whereas those
from the more complex models do. For Models I/II and
IV/V, the same is true with the realistic data sets. In all cases
Model V appeared to provide a reliable analysis.

For the data sets for Models I/II, the centers with higher
risks also had higher average exposure values. Hence center
and exposure were confounded, and Model I’s failure to
allow for center effects led to incorrect results. For the data
sets for Models II/III, nonproportional hazards across cen-
ters were achieved by using Weibull distributions with
different shape parameters. Centers with higher risks also
had higher average exposure values. Model II assumes pro-
portional hazards across centers and so can give incorrect
results as shown by the ‘‘extreme’’ example. For Models
III/IV, the centers with higher risks and higher average
exposure values also had lower hazard ratios for the
confounder. Not allowing for the varying confounding ef-
fect across centers in Model III led to incorrect results with
the ‘‘extreme’’ data set. For Models IV/V, larger centers had
higher exposure hazard ratios. Larger centers are given
more weight in fixed-effect than in random-effect meta-
analysis, so Model IV gave higher hazard ratio estimates
than Model V. The heterogeneity in the exposure hazard
ratios also led to wide confidence intervals with Model V.

To investigate other aspects of the estimators’ perfor-
mance we performed a simulation study, simulating 200
data sets for each of the ‘‘realistic’’ specifications from
Table 3 (a larger simulation study was impractical for
computational reasons). For Models I and II we used only
Prentice’s estimator, because Borgan’s estimator would be
too time-consuming to calculate for this many data sets.



Table 3. Specifications for the artificial data sets

Abbreviations: Wb(a,b) is the Weibull distribution with scale a and shape b, which has hazard function hðtÞ5ðb=aÞðt=aÞb�1; Cx is ‘‘center x’’;
n/a is ‘‘not applicable.’’
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Fig. 2. Estimates and 95% confidence intervals of the exposure hazard ratio for the artificial data sets. The true hazard ratio of 1.5 is marked by the
dotted lines.
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As above, we fitted Model V to all the data sets, partly to
see whether it was much less efficient than the simpler
models. For each model we recorded the coverage rate,
mean bias, and mean squared error of the exposure log haz-
ard ratio, and for the more complex models we recorded the
mean of the relative standard error compared to the simpler
modeldthe larger this ratio, the less efficient the more
complex model is. For 200 simulations, the standard error
of the estimated coverage is approximately 0.015, which
is small enough to show some of the differences between
the models.

The results are shown in Table C.1 in Appendix C. Ac-
cording to the mean relative standard errors, the more com-
plex models were mostly only slightly less efficient than the
simpler ones, with the exception that Model V was much
less efficient than Model IV when applied to the data sets
for Models IV/V. However, Model V had less bias and thus
much lower mean squared error than Model IV. Overall, in
terms of coverage, mean bias, and mean squared error, the
more complex models and Model V performed either very
similarly to the simpler models or better than them, and
Model V performed far better than Model IV.
6. Discussion

We have described five models for the analysis of data
from a stratified caseecohort study, applied them to a study
of physical activity and diabetes incidence, and used artifi-
cial data sets to investigate circumstances in which they can
give different results. Model I, which took no account of the
stratification, gave unreliable results in both the diabetes
study and the artificial examples, regardless of which esti-
mator was used. Even the Borgan estimator gave incorrect
results with Model I in our examples. This suggests that the
statistical model has to explicitly incorporate the stratifica-
tion. It is also necessary to consider assumptions such as
proportional hazards and homogeneous covariate effects
across strata, as these may fail to hold in particular studies.
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However, we found that Model V, the most complex model,
gave reliable results whether or not these assumptions held.
Thus it is a method that can be generally recommended. All
the models described are simple to fit with standard soft-
ware (see Appendix B).

The main drawback of Model V is that if some strata
have very few events, then fitting a separate Cox model
for each one might not be possible. If that happens then
data from an appropriate grouping of strata could be
analyzed using Model II or III. Another drawback of Model
V is that assessing the assumption of proportional hazards
is cumbersome, since it needs to be done for each stratum
and then an overall assessment made by meta-analysis of
the nonproportionality parameter estimates [19]. Similarly,
it is cumbersome to assess the shape of association when
there is a separate model for each stratum. Another possible
drawback is that random-effect meta-analysis is not appro-
priate if there are very few strata, because the estimate of
the between-strata variance will not be precise.

There are several issues that we have not addressed. For
example, we have not considered missing data or whether
multiple imputation would be easier to perform in some
models than others. If multiple imputation was used with
Model V, it would need to be done in each stratum sepa-
rately, using Rubin’s rules, before the meta-analysis [20].
We have only considered methods based on Cox regres-
sion, with a nonparametric baseline hazard, since these
seem to be used almost exclusively in practice [21], but
parametric survival models for stratified caseecohort
studies could be developed. These might have particular
relevance for risk prediction [22], whereas the focus of this
article has been on estimating the risk association of a
particular exposure.

The artificial data sets were deliberately created to show
that the models can give different results in certain plau-
sible scenarios. Our main purpose was not to investigate
the statistical properties of the five models, such as bias
or coverage. However, the simulation study with 200 data
sets for each of the realistic data set specifications gave
similar results, providing reassurance about the stability
of our findings. In particular, it provided evidence that
Model V performs well in terms of bias and coverage
and can be almost as efficient as the simpler models.

There are alternative possibilities for both the selection
of the subcohort and the stratification in the analysis model.
Subcohorts can be selected by more elaborate sampling
schemes, such as using a formula in terms of baseline cova-
riates to specify the relative probability of selection for
each participant [23]. If the formula gives the same proba-
bility for different participants, for example because it uses
only discrete-valued covariates, then this is similar to the
stratified selection discussed in this article.

In terms of analysis, Model III can be adapted by strat-
ifying the Cox model differently from the stratification of
the subcohort-selection. For InterAct, the model could be
stratified by country (a coarser stratification than the
subcohort-selection), or by center and sex (a finer stratifica-
tion than the subcohort-selection), or just by sex. Strati-
fying the model more finely than the subcohort-selection
might be necessary if the assumption of proportional haz-
ards was not met for some covariates. Similarly, Models
IV and V could be adapted by using different subsets of
the data for the separate Cox models.

In their discussion of different types of stratification,
Langholz and Jiao [11] describe two situations for stratified
caseecohort studies. In the ‘‘exposure stratified’’ situation,
the subcohort selection is usually stratified according to a
correlate of the exposure of interest, to improve the effi-
ciency when estimating the exposure’s effect size [1], and
the data are analyzed with an unstratified Cox model. In
the ‘‘confounder stratified’’ situation, the strata might be
population groups or centers, and the data are analyzed
with a stratified Cox model that uses the same stratification,
to account for differences between the strata that might
otherwise lead to bias. Our five models can be used regard-
less of the motivation behind the study design (although
Model I should be avoided if the stratification variable is
confounding the exposureeoutcome association). However,
we have focused more on stratifications that correspond to
population groups or centers, as in InterAct and EPIC-CVD
[24], which is another caseecohort study based on the
EPIC-Europe cohort.
Supplementary material

The appendices for this article are provided as supple-
mentary material at http://dx.doi.org/10.1016/j.jclinepi.
2015.04.007.
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