15 research outputs found

    The Efficiency of Refrigeration Capacity Regulation in the Ambient Air Conditioning Systems

    Get PDF
    The Efficiency of Refrigeration Capacity Regulation in the Ambient Air Conditioning Systems / E. Trushliakov, A. Radchenko, M. Radchenko, S. Kantor, O. Zielikov // Proceedings of the 3rd Intern. Conf. on Design, Simulation, Manufacturing: The Innovation Exchange «Advances in Design, Simulation and Manufacturing III». – Kharkiv, 2020. – Vol. 244. – P. 343–353.Abstract. The operation of the ambient air conditioning systems (ACS) is characterized by considerable fluctuations of the heat load in response to the current climatic conditions. It needs the analyses of the efficiency of the application of compressors with frequency converters for refrigeration capacity regulation in actual climatic conditions. A new method and approach to analyzing the effectiveness of ACS cooling capacity adjusting by using the compressor with changing the rotational speed of the motor as an example have been developed, according to which the overall range of changeable heat loads is divided into two zones: the zone of ambient air processing with considerable fluctuations of the current heat load, that requires effective refrigeration capacity regulation by the compressor with frequency converters (from 100% rated refrigeration capacity down to about 50%) and not an adjustable zone of reduced refrigeration capacity below 50% rated refrigeration capacity of the compressor. The magnitudes of threshold refrigeration capacity between both zones are chosen according to the rational value of installed (design) refrigeration capacity on the ACS, required for cooling the ambient air to a target temperature that ensures the maximum annual refrigeration capacity production in actual current climatic conditions. The proposed method and approach to the analysis of the efficiency of the refrigeration capacity regulation of the ACS compressor by distributing the overall range of changes in current heat loads allows increasing the efficiency of utilizing the installed refrigeration capacity in prevailing climatic conditions

    An Innovative Air Conditioning System for Changeable Heat Loads

    Get PDF
    An Innovative Air Conditioning System for Changeable Heat Loads / E. Trushliakov, M. Radchenko, T. Bohdal, R. Radchenko, S. Kantor // Lecture notes in mechanical engineering. – 2020. – P. 616–625.Abstract. The efficiency of air conditioning (AC) systems depends on the operation of their air coolers at varying heat loads in response to current changeable climatic conditions. In general case, an overall heat load of any AC system comprises the unstable range, corresponding to ambient air processing with heat load fluctuations, and a comparatively stable part for subsequent air subcooling. Following from this approach, a rational design overall heat load is chosen to provide a maximum annular refrigeration capacity generation and divided into a comparatively stable basic part and a remaining part for ambient air precooling at changeable heat loads. The ambient air precooling mode with considerable heat load fluctuation needs load modulation, whereas the comparatively stable heat load range can be covered by operation at about nominal mode. According to modern trend in AC systems the load modulation is performed by varying refrigerant feed to air coolers in Variable Refrigerant Flow (VRF) system. But with this the problem of inefficient operation of air coolers caused by dry-out of inner walls at the final stage of inside tube refrigerant evaporation followed by dropping the intensity of heat transfer remains unsolved. As alternative approach of the heat load modulation in AC systems there is a concept of incomplete refrigerant evaporation with overfilling air coils that leads to excluding a dry-out of inner surface of air coils and is realized through liquid refrigerant recirculation by injector (jet pump)

    Solar pond powered liquid desiccant evaporative cooling

    Get PDF
    Liquid desiccant cooling systems (LDCS) are energy efficient means of providing cooling, especially when powered by low-grade thermal sources. In this paper, the underlying principles of operation of desiccant cooling systems are examined, and the main components (dehumidifier, evaporative cooler and regenerator) of the LDCS are reviewed. The evaporative cooler can take the form of direct, indirect or semi-indirect. Relative to the direct type, the indirect type is generally less effective. Nonetheless, a certain variant of the indirect type - namely dew-point evaporative cooler - is found to be the most effective amongst all. The dehumidifier and the regenerator can be of the same type of equipment: packed tower and falling film are popular choices, especially when fitted with an internal heat exchanger. The energy requirement of the regenerator can be supplied from solar thermal collectors, of which a solar pond is an interesting option especially when a large scale or storage capability is desired

    Experimental evaluation of the new solid desiccant heat pump system in Asia-Pacific climatic conditions

    No full text
    10.1016/j.applthermaleng.2010.09.004Applied Thermal Engineering312-3243-257ATEN

    Solar-desiccant cooling in Asia-pacific region

    No full text
    Clean Energy: Resources, Production and Developments385-40
    corecore