346 research outputs found

    Analysis of bromodeoxyuridine incorporation into DNA: Comparison of gas chromatographic/mass spectrometric, CsCl gradient sedimentation, and specific radioactivity methods

    Full text link
    A sensitive new method for the quantitation of 5-bromodeoxyuridine (BrdUrd) incorporated into DNA by GC/MS analysis of enzymatically released Thy and bromouracil (BrUra) is presented. The hydrolysis procedure was characterized and found to give uniform results when sample size was 1-10 [mu]g DNA and incubation time for DNA digestion was between 40 min and 16 h. Samples of DNA containing 3H-labeled BrdUrd were analyzed in parallel by the GC/MS technique and by specific radioactivity and buoyant density measurements, in order to compare the three methods. The GC/MS procedure gave values for percentage replacement of Thy by BrUra which were higher than those obtained by specific activity and lower than those obtained by buoyant density. This GC/MS method can detect 1% replacement in a 1-[mu]g DNA sample, equivalent to approximately 105 cells or 0.1 mg tissue, and will permit sensitive and quantitative analysis of the presence of this chemotherapeutic agent/radiosensitizer in cellular DNA from biopsy samples of normal or tumor tissue.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/26801/1/0000357.pd

    Stromal architecture directs early dissemination in pancreatic ductal adenocarcinoma

    Get PDF
    Pancreatic ductal adenocarcinoma (PDA) is an extremely metastatic and lethal disease. Here, in both murine and human PDA, we demonstrate that extracellular matrix architecture regulates cell extrusion and subsequent invasion from intact ductal structures through tumor-associated collagen signatures (TACS). This results in early dissemination from histologically premalignant lesions and continual invasion from well-differentiated disease, and it suggests TACS as a biomarker to aid in the pathologic assessment of early disease. Furthermore, we show that pancreatitis results in invasion-conducive architectures, thus priming the stroma prior to malignant disease. Analysis in potentially novel microfluidic-derived microtissues and in vivo demonstrates decreased extrusion and invasion following focal adhesion kinase (FAK) inhibition, consistent with decreased metastasis. Thus, data suggest that targeting FAK or strategies to reengineer and normalize tumor microenvironments may have roles not only in very early disease, but also for limiting continued dissemination from unresectable disease. Likewise, it may be beneficial to employ stroma-targeting strategies to resolve precursor diseases such as pancreatitis in order to remove stromal architectures that increase risk for early dissemination

    What's in a grade? The multidimensional nature of what teacher-assigned grades assess in high school

    Get PDF
    Historically, teacher-assigned grades have been seen as unreliable subjective measures of academic knowledge, since grades and standardized tests have traditionally correlated at about the 0.5 to 0.6 level, and thus explain about 25–35% of each other. However, emerging literature indicates that grades may be a multidimensional assessment of both student academic knowledge and a student's ability to negotiate the social processes of schooling, such as behavior, participation, and effort. This study analyzed the high school transcript component of the Education Longitudinal Study of 2002 (ELS:2002) using multidimensional scaling (MDS) to describe the relationships between core subject grades, non-core subject grades, and standardized test scores in mathematics and reading. The results indicate that when accounting for the academic knowledge component assessed through standardized tests, teacher-assigned grades may be a useful assessment of a student's ability at the non-cognitive aspects of school. Implications for practice, research, and policy are discussed

    Chemical Composition and Antioxidant Activities of Broussonetia papyrifera Fruits

    Get PDF
    Fruits of Broussonetia papyrifera from South China were analyzed for their total chemical composition, and antioxidant activities in ethanol and aqueous extracts. In the fruit of this plant, the crude protein, crude fat and carbohydrates was 7.08%, 3.72% and 64.73% of dry weight, respectively. The crude protein, crude fat and carbohydrates were 15.71%, 20.51% and 36.09% of dry weight, respectively. Fatty acid and amino acid composition of the fruit were analyzed. Unsaturated fatty acid concentration was 70.6% of the total fatty acids. The percentage of the essential amino acids (EAAs) was 40.60% of the total amino acids. Furthermore, B. papyrifera fruit are rich in many mineral elements and vitamins. Total phenolic content was assessed using the Folin-Ciocalteau assay, whereas antioxidant activities were assessed by measuring the ability of the two extracts to scavenge DPPH radicals, inhibit peroxidation, and chelate ferric ions. Their reducing power was also assessed. Results indicated that the aqueous extract of B. papyrifera was a more potent reducing agent and radical-scavenger than the ethanol extract. GC–MS analysis of the ethanol extract showed the presence of some acid-containing compounds. The changes in total phenolic content and antioxidant capacity in B. papyrifera from four different regions grown under normal conditions were assessed. The antioxidant activity of different extracts was positively associated with their total phenolic content. These results suggest that the fruit of B. papyrifera could be used in dietary supplement preparations, or as a food additive, for nutritional gain, or to prevent oxidation in food products

    Weekends affect mortality risk and chance of discharge in critically ill patients: a retrospective study in the Austrian registry for intensive care.

    Get PDF
    BACKGROUND: In this study, we primarily investigated whether ICU admission or ICU stay at weekends (Saturday and Sunday) is associated with a different risk of ICU mortality or chance of ICU discharge than ICU admission or ICU stay on weekdays (Monday to Friday). Secondarily, we analysed whether weekend ICU admission or ICU stay influences risk of hospital mortality or chance of hospital discharge. METHODS: A retrospective study was performed for all adult patients admitted to 119 ICUs participating in the benchmarking project of the Austrian Centre for Documentation and Quality Assurance in Intensive Care (ASDI) between 2012 and 2015. Readmissions to the ICU during the same hospital stay were excluded. RESULTS: In a multivariable competing risk analysis, a strong weekend effect was observed. Patients admitted to ICUs on Saturday or Sunday had a higher mortality risk after adjustment for severity of illness by Simplified Acute Physiology Score (SAPS) 3, year, month of the year, type of admission, ICU, and weekday of death or discharge. Hazard ratios (95% confidence interval) for death in the ICU following admission on a Saturday or Sunday compared with Wednesday were 1.15 (1.08-1.23) and 1.11 (1.03-1.18), respectively. Lower hazard ratios were observed for dying on a Saturday (0.93 (0.87-1.00)) or Sunday (0.85 (0.80-0.91)) compared with Wednesday. This is probably related to the reduced chance of being discharged from the ICU at the weekend (0.63 (0.62-064) for Saturday and 0.56 (0.55-0.57) for Sunday). Similar results were found for hospital mortality and hospital discharge following ICU admission. CONCLUSIONS: Patients admitted to ICUs at weekends are at increased risk of death in both the ICU and the hospital even after rigorous adjustment for severity of illness. Conversely, death in the ICU and discharge from the ICU are significantly less likely at weekends

    Identification of Host Cytosolic Sensors and Bacterial Factors Regulating the Type I Interferon Response to Legionella pneumophila

    Get PDF
    Legionella pneumophila is a gram-negative bacterial pathogen that replicates in host macrophages and causes a severe pneumonia called Legionnaires' Disease. The innate immune response to L. pneumophila remains poorly understood. Here we focused on identifying host and bacterial factors involved in the production of type I interferons (IFN) in response to L. pneumophila. It was previously suggested that the delivery of L. pneumophila DNA to the host cell cytosol is the primary signal that induces the type I IFN response. However, our data are not easily reconciled with this model. We provide genetic evidence that two RNA-sensing proteins, RIG-I and MDA5, participate in the IFN response to L. pneumophila. Importantly, these sensors do not seem to be required for the IFN response to L. pneumophila DNA, whereas we found that RIG-I was required for the response to L. pneumophila RNA. Thus, we hypothesize that bacterial RNA, or perhaps an induced host RNA, is the primary stimulus inducing the IFN response to L. pneumophila. Our study also identified a secreted effector protein, SdhA, as a key suppressor of the IFN response to L. pneumophila. Although viral suppressors of cytosolic RNA-sensing pathways have been previously identified, analogous bacterial factors have not been described. Thus, our results provide new insights into the molecular mechanisms by which an intracellular bacterial pathogen activates and also represses innate immune responses

    Interaction of Temperature and Light in the Development of Freezing Tolerance in Plants

    Get PDF
    Abstract Freezing tolerance is the result of a wide range of physical and biochemical processes, such as the induction of antifreeze proteins, changes in membrane composition, the accumulation of osmoprotectants, and changes in the redox status, which allow plants to function at low temperatures. Even in frost-tolerant species, a certain period of growth at low but nonfreezing temperatures, known as frost or cold hardening, is required for the development of a high level of frost hardiness. It has long been known that frost hardening at low temperature under low light intensity is much less effective than under normal light conditions; it has also been shown that elevated light intensity at normal temperatures may partly replace the cold-hardening period. Earlier results indicated that cold acclimation reflects a response to a chloroplastic redox signal while the effects of excitation pressure extend beyond photosynthetic acclimation, influencing plant morphology and the expression of certain nuclear genes involved in cold acclimation. Recent results have shown that not only are parameters closely linked to the photosynthetic electron transport processes affected by light during hardening at low temperature, but light may also have an influence on the expression level of several other cold-related genes; several cold-acclimation processes can function efficiently only in the presence of light. The present review provides an overview of mechanisms that may explain how light improves the freezing tolerance of plants during the cold-hardening period

    RavN is a member of a previously unrecognized group of Legionella pneumophila E3 ubiquitin ligases

    Get PDF
    The eukaryotic ubiquitylation machinery catalyzes the covalent attachment of the small protein modifier ubiquitin to cellular target proteins in order to alter their fate. Microbial pathogens exploit this post-translational modification process by encoding molecular mimics of E3 ubiquitin ligases, eukaryotic enzymes that catalyze the final step in the ubiquitylation cascade. Here, we show that the Legionella pneumophila effector protein RavN belongs to a growing class of bacterial proteins that mimic host cell E3 ligases to exploit the ubiquitylation pathway. The E3 ligase activity of RavN was located within its N-terminal region and was dependent upon interaction with a defined subset of E2 ubiquitin-conjugating enzymes. The crystal structure of the N-terminal region of RavN revealed a U-box-like motif that was only remotely similar to other U-box domains, indicating that RavN is an E3 ligase relic that has undergone significant evolutionary alteration. Substitution of residues within the predicted E2 binding interface rendered RavN inactive, indicating that, despite significant structural changes, the mode of E2 recognition has remained conserved. Using hidden Markov model-based secondary structure analyses, we identified and experimentally validated four additional L. pneumophila effectors that were not previously recognized to possess E3 ligase activity, including Lpg2452/SdcB, a new paralog of SidC. Our study provides strong evidence that L. pneumophila is dedicating a considerable fraction of its effector arsenal to the manipulation of the host ubiquitylation pathway.Funding: This work was funded by the Intramural Research Program of the National Institutes of Health (to MPM)(Project Number: 1ZIAHD008893-07) and by the Spanish Ministry of Economy and Competitiveness Grant (to AH)(BFU2014-59759-R) and the Severo Ochoa Excellence Accreditation (to AH)(SEV-2016-0644). This study made use of the Diamond Light Source beamline I04 (Oxfordshire, UK) and ALBA synchrotron beamline BL13-XALOC, funded in part by the Horizon 2020 programme of the European Union, iNEXT (H2020 Grant # 653706). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript
    corecore