36 research outputs found

    Impaired Chemosensitivity of Mouse Dorsal Raphe Serotonergic Neurons Overexpressing Serotonin 1A (Htr1a) Receptors

    Get PDF
    BACKGROUND: Serotonergic system participates in a wide range of physiological processes and behaviors, but its role is generally considered as modulatory and noncrucial, especially concerning life-sustaining functions. We recently created a transgenic mouse line in which a functional deficit in serotonin homeostasis due to excessive serotonin autoinhibition was produced by inducing serotonin 1A receptor (Htr1a) overexpression selectively in serotonergic neurons (Htr1a raphe-overexpressing or Htr1a(RO) mice). Htr1a(RO) mice exhibit episodes of autonomic dysregulation, cardiovascular crises and death, resembling those of sudden infant death syndrome (SIDS) and revealing a life-supporting role of serotonergic system in autonomic control. Since midbrain serotonergic neurons are chemosensitive and are implicated in arousal we hypothesized that their chemosensitivity might be impaired in Htr1a(RO) mice. PRINCIPAL FINDINGS: Loose-seal cell-attached recordings in brainstem slices revealed that serotonergic neurons in dorsal raphe nucleus of Htr1a(RO) mice have dramatically reduced responses to hypercapnic challenge as compared with control littermates. In control mice, application of 9% CO(2) produced an increase in firing rate of serotonergic neurons (0.260 ± 0.041 Hz, n=20, p=0.0001) and application of 3% CO(2) decreased their firing rate (-0.142 ± 0.025 Hz, n=17, p=0.0008). In contrast, in Htr1a(RO) mice, firing rate of serotonergic neurons was not significantly changed by 9% CO(2) (0.021 ± 0.034 Hz, n=16, p=0.49) and by 3% CO(2) (0.012 ± 0.046 Hz, n=12, p=0.97). CONCLUSIONS: Our findings support the hypothesis that chemosensitivity of midbrain serotonergic neurons provides a physiological mechanism for arousal responses to life-threatening episodes of hypercapnia and that functional impairment, such as excessive autoinhibition, of midbrain serotonergic neuron responses to hypercapnia may contribute to sudden death

    Adaptor ShcA Protein Binds Tyrosine Kinase Tie2 Receptor and Regulates Migration and Sprouting but Not Survival of Endothelial Cells

    Get PDF
    Angiopoietin-1 can promote migration, sprouting, and survival of endothelial cells through activation of different signaling pathways triggered by the Tie2 tyrosine kinase receptor. ShcA adapter proteins are targets of activated tyrosine kinases and are implicated in the transmission of activation signals to the Ras/mitogen-activated protein kinase pathway. Here we report the identification of an interaction between the adapter protein ShcA and the cytoplasmic domain of Tie2 through in vitro co-immunoprecipitation analysis. Stimulation of endogenous Tie2 in endothelial cells with its ligand angiopoietin-1 increased its association with ShcA and phosphorylation of the adapter protein. The interaction requires the SH2 domain of ShcA and the tyrosine phosphorylation of Tie2 as shown by pull-down experiments. Furthermore, Tyr-1101 of Tie2 was identified as the primary binding site for the SH2 domain of ShcA. Overexpression of a dominant-negative form of ShcA affects angiopoietin-1-induced chemotaxis and sprouting, although it has no effect on survival of endothelial cells. Furthermore, this mutant partially reduces the tyrosine phosphorylation of the regulatory p85 subunit of phosphatidylinositol 3-kinase. Together, our results identified a novel interaction between Tie2 with the adapter molecule ShcA and suggested that this interaction may play a role in the regulation of migration and three-dimensional organization of endothelial cells induced by angiopoietin-1

    Optogenetic Recruitment of Dorsal Raphe Serotonergic Neurons Acutely Decreases Mechanosensory Responsivity in Behaving Mice

    Get PDF
    The inhibition of sensory responsivity is considered a core serotonin function, yet this hypothesis lacks direct support due to methodological obstacles. We adapted an optogenetic approach to induce acute, robust and specific firing of dorsal raphe serotonergic neurons. In vitro, the responsiveness of individual dorsal raphe serotonergic neurons to trains of light pulses varied with frequency and intensity as well as between cells, and the photostimulation protocol was therefore adjusted to maximize their overall output rate. In vivo, the photoactivation of dorsal raphe serotonergic neurons gave rise to a prominent light-evoked field response that displayed some sensitivity to a 5-HT1A agonist, consistent with autoreceptor inhibition of raphe neurons. In behaving mice, the photostimulation of dorsal raphe serotonergic neurons produced a rapid and reversible decrease in the animals' responses to plantar stimulation, providing a new level of evidence that serotonin gates sensory-driven responses.ERC 250334, 5-HT OptogeneticMSCA 220098info:eu-repo/semantics/publishedVersio

    Specific Uncoupling of GRB2 from the Met Receptor DIFFERENTIAL EFFECTS ON TRANSFORMATION AND MOTILITY

    Get PDF
    The biological effects of hepatocyte growth factor/scatter factor are mediated by autophosphorylation of its receptor, the Met tyrosine kinase, on two carboxyl-terminal tyrosines. These phosphotyrosines (Y1349VHVNATY1356VNV) are multifunctional docking sites for several effectors. Grb2, the adaptor for the Ras guanyl-nucleotide exchanger SOS, binds to Tyr1356 in the YVNV motif. By site-directed mutagenesis we either abrogated or duplicated the Grb2 consensus, without interfering with the other effectors. Loss of the link with Grb2 severely impaired transformation. The same mutation, however, had no effect on the "scattering" response, indicating that the level of signal which can be reached by Grb2-independent routes is permissive for motility. Duplication of the Grb2 binding site enhanced transformation and left motility unchanged. Thus, two Met-mediated biological responses, motility and growth, can be dissociated on the basis of their differential requirement for a direct link with Ras

    Transgenic mouse lines for non-invasive ratiometric monitoring of intracellular chloride.

    Get PDF
    Chloride is the most abundant physiological anion and participates in a variety of cellular processes including trans-epithelial transport, cell volume regulation, and regulation of electrical excitability. The development of tools to monitor intracellular chloride concentration ([Cli]) is therefore important for the evaluation of cellular function in normal and pathological conditions. Recently, several Cl-sensitive genetically encoded probes have been described which allow for non-invasive monitoring of [Cli]. Here we describe two mouse lines expressing a CFP-YFP-based Cl probe called Cl-Sensor. First, we generated transgenic mice expressing Cl-Sensor under the control of the mouse Thy1 mini promoter. Cl-Sensor exhibited good expression from postnatal day two (P2) in neurons of the hippocampus and cortex, and its level increased strongly during development. Using simultaneous whole-cell monitoring of ionic currents and Cl-dependent fluorescence, we determined that the apparent EC 50 for Cli was 46 mM, indicating that this line is appropriate for measuring neuronal [Cli] in postnatal mice. We also describe a transgenic mouse reporter line for Cre-dependent conditional expression of Cl-Sensor, which was targeted to the Rosa26 locus and by incorporating a strong exogenous promoter induced robust expression upon Cre-mediated recombination. We demonstrate high levels of tissue-specific expression in two different Cre-driver lines targeting cells of the myeloid lineage and peripheral sensory neurons. Using these mice the apparent EC 50 for Cli was estimated to be 61 and 54 mM in macrophages and DRG, respectively. Our data suggest that these mouse lines will be useful models for ratiometric monitoring of Cli in specific cell types in vivo

    Uncoupling of Grb2 from the Met Receptor In Vivo Reveals Complex Roles in Muscle Development

    Get PDF
    AbstractHepatocyte growth factor (HGF) and its receptor, the Met tyrosine kinase, are determinants of placenta, liver, and muscle development. Here, we show that Met function in vivo requires signaling via two carboxy-terminal tyrosines. Mutation of both residues in the mouse genome caused embryonal death, with placenta, liver, and limb muscle defects, mimicking the phenotype of met null mutants. In contrast, disrupting the consensus for Grb2 binding allowed development to proceed to term without affecting placenta and liver but caused a striking reduction in limb muscle coupled to a generalized deficit of secondary fibers. These data show that the requirements for Met signaling vary depending on the tissue and reveal a novel role for HGF/Met in late myogenesis

    Decreased chemosensitive responses of serotonergic DRN neurons in Htr1a<sup>RO</sup> mice in the absence of synaptic blockade.

    No full text
    <p><i>A, B,</i> Representative recordings performed in normal phenylephrine-supplemented ACSF showing time-courses of serotonergic neuron firing in response to bath application of 9% and 3% CO<sub>2</sub> in slices from control (<i>A</i>) and Htr1a<sup>RO</sup> (<i>B</i>) mice. Lines show firing rate calculated over 10 s bins. Traces illustrate recorded action currents for each experiment. Arrows indicate the application of the Htr1a agonist R-8-OH-DPAT (30 nM) that silenced recorded neurons confirming that they are serotonergic. <i>C,</i> Bar graph of baseline firing rate in control and Htr1a<sup>RO</sup> mice. <i>D,</i> Summary bar graph comparing the effects of 9% and 3% CO<sub>2</sub> in two groups. In Htr1a<sup>RO</sup> mice the response to 9% CO<sub>2</sub> was significantly reduced when compared to control littermates. ** <i>p</i><0.01 (Mann-Whitney test). Number of recorded neurons is indicated in parentheses.</p

    In the absence of α<sub>1</sub>-adrenoceptor stimulation, 9% CO<sub>2</sub> does not change firing rate of spontaneously active serotonergic neurons in control mice.

    No full text
    <p><i>A,</i> Time-course of a representative experiment. Phenylephrine was omitted from ACSF containing synaptic blockers. Inset shows the recorded action current. <i>B,</i> Distribution of responses to 9% CO<sub>2</sub> for all recorded neurons.</p

    Identification of novel peptide hormones in the human proteome by hidden Markov model screening

    No full text
    Peptide hormones are small, processed, and secreted peptides that signal via membrane receptors and play critical roles in normal and pathological physiology. The search for novel peptide hormones has been hampered by their small size, low or restricted expression, and lack of sequence similarity. To overcome these difficulties, we developed a bioinformatics search tool based on the hidden Markov model formalism that uses several peptide hormone sequence features to estimate the likelihood that a protein contains a processed and secreted peptide of this class. Application of this tool to an alignment of mammalian proteomes ranked 90% of known peptide hormones among the top 300 proteins. An analysis of the top scoring hypothetical and poorly annotated human proteins identified two novel candidate peptide hormones. Biochemical analysis of the two candidates, which we called spexin and augurin, showed that both were localized to secretory granules in a transfected pancreatic cell line and were recovered from the cell supernatant. Spexin was expressed in the submucosal layer of the mouse esophagus and stomach, and a predicted peptide from the spexin precursor induced muscle contraction in a rat stomach explant assay. Augurin was specifically expressed in mouse endocrine tissues, including pituitary and adrenal gland, choroid plexus, and the atrio-ventricular node of the heart. Our findings demonstrate the utility of a bioinformatics approach to identify novel biologically active peptides. Peptide hormones and their receptors are important diagnostic and therapeutic targets, and our results suggest that spexin and augurin are novel peptide hormones likely to be involved in physiological homeostasis
    corecore