292 research outputs found

    Globally important plant functional traits for coping with climate change

    Get PDF
    The last decade has seen a proliferation of studies that use plant functional traits to assess how plants respond to climate change. However, it remains unclear whether there is a global set of traits that can predict plants’ ability to cope or even thrive when exposed to varying manifestations of climate change. We conducted a systematic global review which identified 148 studies to assess whether there is a set of common traits across biomes that best predict positive plant responses to multiple climate changes and associated environmental changes. Eight key traits appear to best predict positive plant responses to multiple climate/environmental changes across biomes: lower or higher specific leaf area (SLA), lower or higher plant height, greater water-use efficiency (WUE), greater resprouting ability, lower relative growth rate, greater clonality/bud banks/below-ground storage, higher wood density, and greater rooting depth. Trait attributes associated with positive responses appear relatively consistent within biomes and climate/environmental changes, except for SLA and plant height, where both lower and higher trait attributes are associated with a positive response depending on the biome and climate/environmental change considered. Overall, our findings illustrate important and general trait-climate responses within and between biomes that help us understand which plant phenotypes may cope with or thrive under current and future climate change.publishedVersio

    Late Quaternary climate legacies in contemporary plant functional composition

    Get PDF
    The functional composition of plant communities is commonly thought to be determined by contemporary climate. However, if rates of climate‐driven immigration and/or exclusion of species are slow, then contemporary functional composition may be explained by paleoclimate as well as by contemporary climate. We tested this idea by coupling contemporary maps of plant functional trait composition across North and South America to paleoclimate means and temporal variation in temperature and precipitation from the Last Interglacial (120 ka) to the present. Paleoclimate predictors strongly improved prediction of contemporary functional composition compared to contemporary climate predictors, with a stronger influence of temperature in North America (especially during periods of ice melting) and of precipitation in South America (across all times). Thus, climate from tens of thousands of years ago influences contemporary functional composition via slow assemblage dynamics

    Patterns and drivers of plant functional group dominance across the Western Hemisphere: a macroecological re-assessment based on a massive botanical dataset

    Get PDF
    Plant functional group dominance has been linked to climate, topography and anthropogenic factors. Here, we assess existing theory linking functional group dominance patterns to their drivers by quantifying the spatial distribution of plant functional groups at a 100-km grid scale. We use a standardized plant species occurrence dataset of unprecedented size covering the entire New World. Functional group distributions were estimated from 3 648 533 standardized occurrence records for a total of 83 854 vascular plant species, extracted from the Botanical Information and Ecology Network (BIEN) database. Seven plant functional groups were considered, describing major differences in structure and function: epiphytes; climbers; ferns; herbs; shrubs; coniferous trees; and angiosperm trees. Two measures of dominance (relative number of occurrences and relative species richness) were analysed against a range of hypothesized predictors. The functional groups showed distinct geographical patterns of dominance across the New World. Temperature seasonality and annual precipitation were most frequently selected, supporting existing hypotheses for the geographical dominance of each functional group. Human influence and topography were secondarily important. Our results support the prediction that future climate change and anthropogenic pressures could shift geographical patterns in dominance of plant functional groups, with probable consequences for ecosystem functioning

    Informing trait-based ecology by assessing remotely sensed functional diversity across a broad tropical temperature gradient

    Get PDF
    Spatially continuous data on functional diversity will improve our ability to predict global change impacts on ecosystem properties. We applied methods that combine imaging spectroscopy and foliar traits to estimate remotelysensed functional diversity in tropical forests across an Amazon-to-Andes elevation gradient (215 to 3537 m). We evaluated the scale dependency of community assembly processes and examined whether tropical forest productivitycould be predicted by remotely sensed functional diversity. Functional richness of the community decreased withincreasing elevation. Scale-dependent signals of trait convergence, consistent with environmental filtering, play animportant role in explaining the range of trait variation within each site and along elevation. Single- and multitraitremotely sensed measures of functional diversity were important predictors of variation in rates of net and grossprimary productivity. Our findings highlight the potential of remotely sensed functional diversity to inform trait-based ecology and trait diversity-ecosystem function linkages in hyperdiverse tropical forests.Fil: Durán, Sandra M.. University of Arizona; Estados UnidosFil: Martin, Roberta E.. Arizona State University; Estados UnidosFil: Díaz, Sandra Myrna. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; ArgentinaFil: Maitner, Brian S.. Arizona State University; Estados UnidosFil: Malhi, Yadvinder. University of Oxford; Reino UnidoFil: Salinas, Norma. University of Oxford; Reino Unido. Pontificia Universidad Católica de Perú; PerúFil: Shenkin, Alexander. University of Oxford; Reino UnidoFil: Silman, Miles R.. Wake Forest University; Estados UnidosFil: Wieczynski, Daniel J.. University of Oxford; Reino UnidoFil: Asner, Gregory P.. Arizona State University; Estados UnidosFil: Bentley, Lisa Patrick. Sonoma State University; Estados UnidosFil: Savage, Van M.. University of California; Estados UnidosFil: Enquist, Brian J.. Arizona State University; Estados Unido

    Intraspecific trait variability is a key feature underlying high Arctic plant community resistance to climate warming

    Get PDF
    In the high Arctic, plant community species composition generally responds slowly to climate warming, whereas less is known about the community functional trait responses and consequences for ecosystem functioning. The slow species turnover and large distribution ranges of many Arctic plant species suggest a significant role of intraspecific trait variability in functional responses to climate change. Here we compare taxonomic and functional community compositional responses to a long-term (17-year) warming experiment in Svalbard, Norway, replicated across three major high Arctic habitats shaped by topography and contrasting snow regimes. We observed taxonomic compositional changes in all plant communities over time. Still, responses to experimental warming were minor and most pronounced in the drier habitats with relatively early snowmelt timing and long growing seasons (Cassiope and Dryas heaths). The habitats were clearly separated in functional trait space, defined by 12 size- and leaf economics-related traits, primarily due to interspecific trait variation. Functional traits also responded to experimental warming, most prominently in the Dryas heath and mostly due to intraspecific trait variation. Leaf area and mass increased and leaf δ15N decreased in response to the warming treatment. Intraspecific trait variability ranged between 30% and 71% of the total trait variation, reflecting the functional resilience of those communities, dominated by long-lived plants, due to either phenotypic plasticity or genotypic variation, which most likely underlies the observed resistance of high Arctic vegetation to climate warming. We further explored the consequences of trait variability for ecosystem functioning by measuring peak season CO2 fluxes. Together, environmental, taxonomic, and functional trait variables explained a large proportion of the variation in net ecosystem exchange (NEE), which increased when intraspecific trait variation was accounted for. In contrast, even though ecosystem respiration and gross ecosystem production both increased in response to warming across habitats, they were mainly driven by the direct kinetic impacts of temperature on plant physiology and biochemical processes. Our study shows that long-term experimental warming has a modest but significant effect on plant community functional trait composition and suggests that intraspecific trait variability is a key feature underlying high Arctic ecosystem resistance to climate warming.publishedVersio

    Global city densities: Re-examining urban scaling theory

    Get PDF
    Understanding scaling relations of social and environmental attributes of urban systems is necessary for effectively managing cities. Urban scaling theory (UST) has assumed that population density scales positively with city size. We present a new global analysis using a publicly available database of 933 cities from 38 countries. Our results showed that (18/38) 47% of countries analyzed supported increasing density scaling (pop ~ area) with exponents ~⅚ as UST predicts. In contrast, 17 of 38 countries (~45%) exhibited density scalings statistically indistinguishable from constant population densities across cities of varying sizes. These results were generally consistent in years spanning four decades from 1975 to 2015. Importantly, density varies by an order of magnitude between regions and countries and decreases in more developed economies. Our results (i) point to how economic and regional differences may affect the scaling of density with city size and (ii) show how understanding country- and region-specific strategies could inform effective management of urban systems for biodiversity, public health, conservation and resiliency from local to global scales.200 word statement of contribution: Urban Scaling Theory (UST) is a general scaling framework that makes quantitative predictions for how many urban attributes spanning physical, biological and social dimensions scale with city size; thus, UST has great implications in guiding future city developments. A major assumption of UST is that larger cities become denser. We evaluated this assumption using a publicly available global dataset of 933 cities in 38 countries. Our scaling analysis of population size and area of cities revealed that while many countries analyzed showed increasing densities with city size, about 45% of countries showed constant densities across cities. These results question a key assumption of UST. Our results suggest policies and management strategies for biodiversity conservation, public health and sustainability of urban systems may need to be tailored to national and regional scaling relations to be effective
    corecore