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Plant functional group dominance has been linked to climate, topography and anthropogenic factors. Here, we
assess existing theory linking functional group dominance patterns to their drivers by quantifying the spatial
distribution of plant functional groups at a 100-km grid scale. We use a standardized plant species occurrence
dataset of unprecedented size covering the entire New World. Functional group distributions were estimated from
3 648 533 standardized occurrence records for a total of 83 854 vascular plant species, extracted from the Botanical
Information and Ecology Network (BIEN) database. Seven plant functional groups were considered, describing
major differences in structure and function: epiphytes; climbers; ferns; herbs; shrubs; coniferous trees; and
angiosperm trees. Two measures of dominance (relative number of occurrences and relative species richness) were
analysed against a range of hypothesized predictors. The functional groups showed distinct geographical patterns
of dominance across the New World. Temperature seasonality and annual precipitation were most frequently
selected, supporting existing hypotheses for the geographical dominance of each functional group. Human influence
and topography were secondarily important. Our results support the prediction that future climate change and
anthropogenic pressures could shift geographical patterns in dominance of plant functional groups, with probable
consequences for ecosystem functioning. © 2015 The Linnean Society of London, Botanical Journal of the Linnean
Society, 2016, 180, 141–160.
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INTRODUCTION

The biosphere can be divided into a number of vegeta-
tion zones, thought to be largely determined by
climate, that occur in a repeated pattern across the
continents (Holdridge, 1947; Küchler, 1949; Olson
et al., 2001). The transitions between these zones are
believed to be controlled by a variety of primarily
climatic factors (Walter, 1973; Whittaker, 1975;
Lavorel et al., 1997) that determine the presence and
frequency of different functional groups of plants
(Dansereau, 1951; Penfound, 1967). However, the
extent to which the distributions of these vegetation
zones are determined by climate is debated. Other
environmental factors related to the availability of
resources, or possibly top–down control by grazing or
fires, are also believed to influence the distribution of
plant vegetation zones (Bond, 2005). The delimitation
of such vegetation zones is largely based on dominance
patterns among major plant functional groups
(Vasquez & Givnish, 1998; Duckworth, Kent &
Ramsay, 2000).

We define plant functional groups as species using
similar resources and sharing morphological and
physiological traits (Lauenroth, Dodd & Sims, 1978;
Diaz & Cabido, 1997; Duckworth et al., 2000). The
division of plants into functional groupings on the
basis of functional traits has been recognized as an
important way to simplify ecological complexity and to
reveal general patterns (Box, 1996; Cornelissen et al.,
2003). Many studies have focused on the connection
between functional traits in local communities
and environmental factors (Chapin et al., 1996;
Bernhardt-Romermann et al., 2011), whereas fewer
have looked into continental-scale patterns (e.g. Moles
et al., 2009; Swenson et al., 2012; Lamanna et al.,
2014). Studies that quantitatively investigate
continental-scale patterns of plant functional group
dominance are lacking. For most species, we have
limited knowledge of their individual response to envi-
ronmental change and, in turn, how their response
might affect the entire community (Bellard et al.,
2012). Species in the same functional group are
assumed to respond more similarly to changes in their
environment, and therefore functional groups can be
used as a proxy to investigate the links between
species distributions and environmental changes on
regional and even global scales (Duckworth et al.,
2000; Voigt, Perner & Jones, 2007). Furthermore,
plant functional groups based on structure can be
easily assigned in the field and are globally comparable
among studies and sites (Dormann & Woodin, 2002;
Harrison et al., 2010).

The dominance of different plant functional groups
has been linked previously to climate, but the
strength and direction of the relationships need

further assessment, especially to improve predictions
of climate change effects (Box, 1996; Diaz & Cabido,
1997; Harrison et al., 2010). However, the general
importance of geographical variability in other envi-
ronmental factors, such as topography, soil conditions
and disturbance, is less certain. Humans increasingly
change the global environment, exerting a growing
pressure on natural ecosystems, and even change
natural biomes to anthromes (Ellis, 2011). This is
likely to change community composition through dif-
ferent effects on different functional groups (Chapin
et al., 2000). Which of these multiple factors are the
most important for each plant functional group and
how they influence geographical patterns of domi-
nance are yet to be determined.

Here, we leverage a massive botanical dataset to
provide the first continental-scale quantitative analy-
sis of the factors underlying the geographical distribu-
tion of major plant functional groups. We define and
compile a new dataset on seven vascular plant func-
tional groups that describe important differences in
plant structure and function and large-scale vegeta-
tion types: ferns and fern allies (hereafter referred to
as ferns); coniferous trees; angiosperm trees; shrubs;
herbs; climbers; and epiphytes. The aims of this article
are: (1) to quantify and compare geographical patterns
in the dominance of these plant functional groups
across the New World; (2) to identify the underlying
environmental drivers; and (3) to determine the rela-
tive influence of natural factors compared with human-
related disturbance. We assess three hypotheses: (H1)
the dominant factors controlling plant functional
group distributions are the natural drivers climate and
soil; (H2) human influence is now so pervasive that
drivers related to anthropogenic disturbance are also
important at the continental scale; and (H3) coniferous
and angiosperm trees and epiphytes decline in domi-
nance with increasing disturbance, whereas herbs and
shrubs increase and climbers and ferns exhibit inter-
mediate responses (Fig. 1, see also subsection on
‘Specimen data and predictions’ in ‘Material and
methods’ section).

MATERIAL AND METHODS
PREDICTOR VARIABLES

We used 12 environmental and biotic predictor vari-
ables, all of which have been proposed to be influen-
tial for the geographical distribution of plant
functional groups (Table 1, Fig. 1). All data layers
were resampled to 100 × 100-km2 resolution grid cells
and projected to the Lambert azimuthal equal area
projection. Collinearity among the predictor variables
was checked with the pairwise Pearson product-
moment correlation coefficient (Supporting Informa-
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tion, Table S1). We chose annual mean temperature,
temperature seasonality, annual precipitation, pre-
cipitation seasonality, actual evapotranspiration and
the sand content of the soil to represent natural
climate- and soil-related factors. The human influence
index (HII) and fire were chosen as direct measures of
human-related disturbance. HII represents anthropo-
genic impacts on the environment as an index value
based on nine global data layers related to human
population pressure, land use, and infrastructure and
accessibility (Wildlife Conservation Society, 2005).
Fire was calculated as the mean burnt area per year
using data from Tansey et al. (2008), which provides
the Julian date of fire detection each year at 1-km
resolution. Tree height also partially captures the
effects of human-related disturbance. Tree height con-
tains a natural signal reflecting its dependence on
climate and other natural environmental factors, but
will also strongly reflect anthropogenic land cover
change, notably deforestation. In addition, tree height
may capture ecological interactions between trees and
other functional groups, e.g. negative, competitive
interactions with herbs and positive interactions with
tree-dependent epiphytes. To avoid issues of circular-
ity, tree height was excluded as a predictor of conif-
erous and angiosperm trees. We also included
elevation, topographical heterogeneity and slope as
topographical predictors. Topography will capture
natural variation in vegetation structure and distur-
bance regime (e.g. landslides in steep terrain).
However, it is also likely to contain a human impact
signal, as natural vegetation in many regions is
increasingly constrained to steep terrain (Sandel &
Svenning, 2013). Slope was calculated from elevation
as a percentage using the slope tool in the SDMtools

package. Topographical heterogeneity was also calcu-
lated from elevation as the standard deviation. Slope
and topographical heterogeneity were highly corre-
lated (r = 0.97). We chose to retain slope, as this
variable is more closely linked to our predictions.
Mean annual temperature, temperature seasonality,
annual precipitation and actual evapotranspiration
were also highly correlated. We defined three sets of
models which kept the highly correlated variables
separate (Supporting Information, Table S2). Based
on improvement in model performance, measured as
R2 values, of the three model sets, we only report
results from the model with temperature seasonality
(model set 2). We also included sampling intensity,
calculated as the number of georeferenced observa-
tions within a grid cell, as a predictor variable to
control further for sampling effects.

SPECIMEN DATA AND PREDICTIONS

We defined seven different vascular plant functional
groups, describing important differences in plant
structure and function: ferns; coniferous trees; angio-
sperm trees; shrubs; herbs; climbers; and epiphytes.
Data on plant functional groups were compiled from
multiple data sources. We extracted information on
plant functional groups from the Botanical Informa-
tion and Ecology Network (BIEN 2.0) herbarium col-
lection dataset based on the specimen description field
(Enquist et al., 2009; http://bien.nceas.ucsb.edu/bien/),
the Plant Trait Database (TRY) (Kattge et al., 2011),
the SALVIAS database (The SALVIAS Project, 2002;
http://www.salvias.net/pages/database_info.php), the
USDA PLANTS database (USDA, 2008) and Tropicos®
(www.tropicos.org) (Tropicos, 2014). Species were

Herbs

Vegetation

HII

Topography

Fire

Ferns
Climbers

Epiphytes
Coniferous trees
Angiosperm trees

Increasing human disturbance

Shrubs

Figure 1. Hypothetical relationship between plant functional groups and human disturbance. The large arrow represents
a gradient of increasing human disturbance. The positions of the functional groups on the disturbance gradient represent
the tolerance of each group based on predictions from the existing literature. The thin arrows show the relationship
between human disturbance and our representative environmental predictors: arrows to the right show predictors that
increase disturbance, whereas arrows to the left show predictors that decrease disturbance. HII, human influence index.
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assigned a functional group value when more than
two-thirds of the sources agreed on the same functional
group (84 434 species). Otherwise, the species was
excluded (5629 species). We then reclassified the
species to fit our seven vascular plant functional
groups by first dividing the data into three major
phylogenetic groups based on their fundamental func-
tional differences: ferns; gymnosperms; and angio-
sperms. The gymnosperms were subdivided into
conifers (mainly trees, although a few are shrubs) and
several functionally divergent small groups (e.g.
cycads), which were excluded from further considera-
tion in this study because of the small sample size. The
angiosperms were subdivided into five functional sub-
groups: angiosperm trees; shrubs; herbs; climbers; and
epiphytes. The shrubs category included both true
shrubs and suffruticose species. The climbers were
similarly constructed by combining herbaceous vines
and woody lianas. Herbs are non-woody herbaceous
plants that are not epiphytes or ferns.

Each of our seven functional groups is characterized
by unique and ecologically relevant traits. We used this
to generate specific predictions about the most influ-
ential drivers of the distribution and dominance of
each functional group based on the existing literature
(see also Table 2). Ferns are vascular cryptogams that
disperse via spores (Taylor, Kerp & Hass, 2005). They
are also characterized by an independent, free-living
gametophyte life stage that is dependent on water
(Kato, 1993), and their lack of stomatal control makes
them vulnerable to drought (Brodribb & McAdam,
2011). Ferns are limited by water availability, as only
a few have adaptations to drought (Schuettpelz et al.,
2007). They are therefore expected to peak at sloped
regions at mid–high elevation and high precipitation
(Aldasoro, Cabezas & Aedo, 2004; Kessler et al., 2011).
Epiphytes grow on other plants, which they rely on
only for support, i.e. non-parasitically (Benzing, 1990).
They are mostly herbaceous, but also include some
woody species (e.g. Clusia L.). The aerial position of
epiphytes creates a need for high humidity and hence
high precipitation (Walter, 1973; Benzing, 1990). Fur-
thermore, epiphytes are strongly dependent on avail-
able substrate and their distribution is expected to be
correlated with the distribution of humid forests. As
these forests are often found in mountainous regions,
epiphyte richness is expected to peak in sloped regions
at intermediate elevation, with drought constriction at
lower elevations, and frost and treeline constriction at
higher elevations (Janzen, 1975; Gentry & Dodson,
1987; Kromer et al., 2005). Climbers are defined as
herbaceous or woody plants that also non-parasitically
rely on other plants for support, but are rooted in the
ground. Climbers are more frequent in the tropics
because of the vulnerability of their wide vessels to
embolisms under freezing conditions (Gentry, 1991). InT
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tropical forests, their density increases with drought
occurrence as a result of their competitive advantage
in the assimilation of carbon and utilization of nitrogen
and water compared with trees. Hence, the fraction of
climbers should increase with increasing precipitation
seasonality and decreasing precipitation (Schnitzer,
2005; Cai, Schnitzer & Bongers, 2009). Connected tree
crowns support and facilitate climber occurrence by
enabling their climbing, and climber distribution
should follow the distribution of forests (Toledo et al.,
2011), with increases in disturbed areas as a result of
strong pioneering abilities (Schnitzer & Bongers,
2011). Herbs generally have low water-storing ability
and are increasingly found in areas with high precipi-
tation (Gurevitch, Scheiner & Fox, 2006). As they
require less carbon for construction, they can occupy
colder and more seasonal environments than can trees
(Harrison et al., 2010), and competition for light
results in higher frequencies of herbs in areas with
open canopies in unfertile or drought-prone areas with
high soil sand content (Vasquez & Givnish, 1998).
Shrubs are self-standing woody plants that have more
than one main stem arising from near the ground,
which can prevent fires and herbivores from damaging
the innermost stems. Furthermore, the basal meris-
tem ensures regrowth in the case of damage to above-
ground parts (Zizka, Govender & Higgins, 2014).
Shrubs dominate in dry to very dry areas as a result of
high drought tolerance (Givnish, 1995), and the shrub
fraction should thus increase along an increasing
temperature and decreasing precipitation gradient
(Gurevitch et al., 2006). The distribution of shrubs can
be promoted by disturbance in the form of fires and
grazing, which limit the distribution of tree competi-
tors and favour the regenerative ability of shrubs
(McIntyre et al., 1999; Eldridge et al., 2011). Trees are
self-standing woody plants with a single main stem
(Penfound, 1967). We considered two groups of trees:
conifers (gymnosperms in the order Pinales); and
angiosperm trees. Coniferous trees have mostly
evergreen needle-like leaves with deciduous species
being rare, whereas angiosperm trees include both
evergreen and deciduous species, with leaves that are
usually broader. The needle-like leaves of conifers have
lower photosynthetic ability than the broader leaves of
angiosperm trees that dominate productive environ-
ments. However, the majority of conifers with ever-
green needles have year-round photosynthesis and are
more resistant to drought (Bond, 1989). Coniferous
trees have low photosynthetic ability of leaves and
slow growth, which are competitive disadvantages
compared with angiosperm trees in forest openings.
This should limit their geographical distribution to
colder, more seasonal, drier and nutrient-poor areas
with sandy soils, where angiosperm tree seedlings are
unable to establish (Bond, 1989). Angiosperm trees

require higher amounts of carbon than herbaceous
plants for construction, and their frequency should
increase with higher water and nutrient availability
(Harrison et al., 2010), and dominance should be
higher in wetter and less seasonal regions (Crawley,
1997; Toledo et al., 2011). Disturbance in the form of
grazing and fires is limiting for the occurrence of both
coniferous and angiosperm trees, as it hinders the
establishment of seedlings (Bond, 1989; Staver,
Archibald & Levin, 2011).

The functional group classification was combined
with standardized georeferenced plant species occur-
rence data, also from the BIEN 2.0 database. This gave
us a total of 83 854 species and 3 648 533 georefer-
enced observations with functional group assignments
across the New World. The BIEN 2.0 database contains
georeferenced plant observations from herbarium
specimens, vegetation plot inventories, species distri-
bution maps and plant traits covering the whole New
World and spanning a wide time period from the
beginning of the 17th century to 2011. Most data,
however, were from the last few decades. All original
data sources can be found on the BIEN website (http://
bien.nceas.ucsb.edu/bien/biendata/bien-2/sources/).
Before inclusion in the database, all species names
were taxonomically standardized and synonyms
updated to the most recent accepted name with the
Taxonomic Name Resolution Service (version 1; Boyle
et al., 2013), with Tropicos® as the taxonomic author-
ity (http://www.tropicos.org) Tropicos, 2014. Also, all
specimens in the database were ‘geoscrubbed’ to
ensure reliability of georeferenced data. We also
excluded all specimens that were categorized as culti-
vated to focus on the naturally occurring patterns of
plant functional groups.

Two measures of dominance for each functional
group were calculated: relative species richness (pro-
portion of total plant species richness per 100 × 100-
km2 grid cell) and relative frequency (proportion of
total number of plant occurrences registered per grid
cell). We calculated both measures to ensure that our
results were robust. The data were analysed as pro-
portions to represent dominance and to reduce any
bias affecting the sampling of different functional
groups differentially in a given grid cell. We define the
dominance of a given functional group as high rela-
tive frequency of occurrences or species richness, and
refer to it as such in the subsequent sections. The
functional group observations were rasterized to
100 × 100-km2 grid cells in a Lambert’s azimuthal
equal-area projection to eliminate area effects on
species frequency and richness estimates. Total and
functional group species richness per grid cell were
corrected for differences in sampling intensity
between grids using Margalef’s diversity index, before
calculating relative richness (Margalef, 1958). This
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index standardizes the number of species in a sample
in relation to the number of observations following
the formula d = S − 1/ln N, where S is the number of
species and N is the number of specimens in the
sample (we consider occurrences as specimens and
grid cells as samples) (Gamito, 2010). As both of the
functional group measures were proportions, they
were arcsine transformed before statistical analysis.
Sampling intensity varied greatly among cells (range,
1–70 518; median, 48), with poorly sampled cells pos-
sibly giving unreliable estimates of growth form domi-
nance. Thus, we excluded cells with < 50 observations
from all statistical analyses, even though this
resulted in decreased spatial coverage (Supporting
Information, Fig. S1).

STATISTICAL ANALYSIS

We tested the strength of the relationship between the
relative richness and relative frequency of each func-
tional group and the predictor variables with boosted
regression trees (BRTs). The greatest strength of the
BRT models is their ability to model non-linear
responses and interactions between predictors to opti-
mize model fits, whilst overcoming the drawbacks of
simple classification and regression trees (CARTs)
which have poor predictive performance (De’ath,
2007; Elith, Leathwick & Hastie, 2008). Non-linear
responses and interactions are both likely to influence
the relationship between functional groups and envi-
ronmental predictors, and the BRT models will there-
fore provide highly reliable estimates of variable
influence. BRTs combine large numbers of CART
models adaptively to optimize predictions (Elith et al.,
2006; De’ath, 2007). Boosting differs from model aver-
aging by being a stagewise procedure. Each CART is
fitted randomly, but sequentially, until the addition of
new trees no longer increases the accuracy of the
model, as measured by model residuals (Greve et al.,
2011). We fitted the BRT models to the data using a
slow learning rate of 0.001 and allowed for interactions
of predictors by setting tree complexity to 5 for
increased predictive ability (Leathwick et al., 2008).
The influence of interactions between the predictor
variables was estimated with the gbm.interactions
function in the gbm package. Ten-fold cross-validation
was used to determine the optimal number of trees for
each functional group, which ranged from 4950 to
11 500 (Table 3, Supporting Information, Table S3),
and the bag fraction was set to 0.5 with observations
being chosen at random (Elith et al., 2008). The
performance of the models was calculated as the
cross-validation correlation (Tables 3, S3). We fitted
response curves of functional group relative frequency
and richness and the environmental variables to illus-
trate the direction of the relationship. T
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To supplement the BRT results, we fitted single
and multiple ordinary least-squares (OLS) regres-
sion models generated with an all subsets selection
approach. We used all subsets selection to generate
all possible combinations of models from the nine
variables in the model set containing temperature
seasonality. No pairwise interactions between model
parameters were fitted to limit model complexity
and to ease the interpretation of parameter coeffi-
cients. The model parameters were then calculated
as averaged means weighted with the Akaike infor-
mation criterion (AIC) of each model, following
Burnham & Anderson (2002). Model averaging
based on all of these models allowed us to use the
models predictively and to compare both the
strength and direction of parameter estimates
(Symonds & Moussalli, 2010). Model performance
was estimated as R2 values and model support as
the summed AIC weights across all predictors. Pre-
dictor importance was calculated as the summed
AIC weight for each individual predictor across all
models following the zero method, which substitutes
coefficients of predictors not included in the model
with zero (Nakagawa & Freckleton, 2010).

Spatial autocorrelation is often present in species
occurrence data and can bias parameter estimates
(Dormann et al., 2007). We tested for spatial auto-
correlation by examining Moran’s I value correlo-
grams (Supporting Information, Fig. S2) for the
residuals of the OLS model with all the variables
for a given predictor variable set. The correlograms
showed considerable spatial autocorrelation in all of
the global OLS model residuals. Spatial autocorre-
lation is only handled to a limited degree by BRT
models (Crase, Liedloff & Wintle, 2012), and we
therefore repeated all subset selection and model
averaging with simultaneous autoregressive (SAR)
models, and only show regression results from
these. We fitted the SAR models as spatial error
models, as these have been shown to account effec-
tively for spatial autocorrelation in response and
explanatory variables and to provide reliable param-
eter estimates (Kissling & Carl, 2008). Similar to
the OLS models, no interactions were fitted for the
SAR models. Model performance was estimated as
pseudo-R2 values without the spatial terms, and
model support as the summed AIC weights across
all predictors. As a result of computational limits,
we only averaged models with ΔAIC < 10, as models
with higher values have little influence on the final
parameter estimates.

All GIS (packages ‘raster’, ‘rgdal’, ‘SDMTools’ and
‘sp’) and statistical (packages ‘ape’, ‘dismo’, ‘fossil’,
‘gbm’, ‘gtools’, ‘Hmisc’, ‘leaps’, ‘MuMIn’, ‘ncf ’, ‘plyr’,
‘qpcR’, ‘spdep’ and ‘vegan’) operations were performed
in R 3.0.0 (R Development Core Team, 2013).

RESULTS
SPATIAL PATTERNS OF FUNCTIONAL

GROUP DOMINANCE

The seven functional groups showed distinct distri-
bution patterns in dominance (Fig. 2, r = 0.01–0.83,
Supporting Information, Table S4). Epiphytes, climb-
ers, ferns and angiosperm trees were most dominant
in the tropics, especially in the Amazonian lowland.
Herb dominance was highest in the temperate
regions and decreased towards tropical regions.
Shrub dominance was more patchily distributed, but
with reoccurring high dominance in drier regions of
both North and South America. Conifers were
mainly dominant in North America, with only a few
records in South America. The patterns of relative
frequency were similar to those of relative richness
for all functional groups, and these results are
shown in Supporting Information (Figs S3, S4, S5a,
S6a; Tables S3–S6).

ENVIRONMENTAL PREDICTORS OF FUNCTIONAL

GROUP DOMINANCE

The BRT models showed that temperature seasonal-
ity and annual precipitation were most common
among the three variables explaining most of the
variation in relative dominance for all functional
groups, followed by HII and sampling intensity
(Table 3). The cross-validation correlation values for
the BRT models ranged from 0.68 to 0.91. The fitted
response plots from the BRT models showed that
epiphytes, climbers, shrubs and angiosperm trees
dominated at low temperature seasonality, whereas
herbs and conifers peaked at high temperature sea-
sonality (Figs 3, S5b). Ferns had maximum domi-
nance at high temperature seasonality, but lowest
dominance at intermediate temperature seasonality.
Epiphytes, ferns and angiosperm trees all had the
highest dominance at high annual precipitation,
whereas climbers, herbs, shrubs and coniferous trees
dominated at low annual precipitation (Figs 3, S5b).
Precipitation seasonality was also an important pre-
dictor of shrub dominance, with dominance peaking
at high seasonality (Fig. S5b). Sand content was only
among the more important predictors for ferns and
epiphytes, which both peaked at low sand content.
Elevation ranked high for climbers, but was generally
less important than climatic factors (Table 3). HII
was among the most important predictors for ferns
and coniferous and angiosperm trees, but was much
less important for the other functional groups. Ferns
and herbs had highest dominance at medium to high
HII, whereas epiphytes, climbers, shrubs and angio-
sperm trees peaked at low to intermediate levels of
HII. Conifers were only dominant at the lowest levels
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of HII (Figs 3, S5b). Sampling ranked high for all
functional groups, except shrubs and angiosperm
trees (Table 3). Interaction effects were generally
weak, but often included a combination of tempera-
ture and precipitation variables (Table S6). The only
strong interaction was found between sand and HII
for ferns, which peaked at low sand content and high
HII (Supporting Information, Fig. S7).

Model performance from the SAR multiple regres-
sion with all subsets selection was in the range
R2 = 0.25–0.70. The best predictor model for each
functional group consisted of nearly all predictor vari-
ables, and so we used model averaging to quantify
variable influence. Model averaging showed that tem-
perature seasonality was always among the three
most important predictors for all functional groups
(Table 4). The importance of other predictors varied
across the functional groups, but annual precipitation

and sampling were often among the most important
predictors. The estimated variable effects were, with
few exceptions, consistent with the results from the
BRT models (Tables 3, 4).

DISCUSSION
GEOGRAPHICAL PATTERNS IN PLANT FUNCTIONAL

GROUP DOMINANCE

The work of the earliest biogeographers, including
Willdenow and von Humboldt, documented changing
vegetation patterns along environmental gradients
(Lomolino et al., 2010). The differences in geographi-
cal patterns of our functional groups (Fig. 2) imply
that they are driven by different underlying ecological
or evolutionary mechanisms (Wiens, 2011). For
instance, having a herbaceous habit has been linked
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Figure 2. Geographical distribution of relative functional group species richness. All maps show the proportion of
individual functional group species richness relative to the total species richness. A, Ferns. B, Epiphytes. C, Climbers. D.
Herbs. E, Shrubs. F, Coniferous trees. G, Angiosperm trees. The maps illustrate the unique spatial patterns of relative
species richness for the individual functional groups. Richness was calculated as the number of species of a given
functional group within a 100 × 100-km2 grid cell. Cells with < 50 observations (Fig. S1C) were excluded. Grey shows cells
without any observations. Projection: Lambert azimuthal equal area.
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to cold adaptation (Billings, 1987). Plant functional
groups are hypothesized to reflect adaptations to
environmental conditions (Box, 1996), which probably
explain the differences in their spatial distribution
and relation to environmental drivers. Functional
groups could also limit the distribution of one another
through negative ecological interactions. For example,
angiosperm trees are expected to outcompete the
more slow-growing coniferous trees under favourable
environmental conditions (Bond, 1989). This most
probably explains the near-absence of coniferous trees
in the Amazonian region of South America where

angiosperm tree dominance peaks (Fig. 2). However,
the two functional groups overlap substantially else-
where in the Americas, suggesting that the competi-
tive dominance of angiosperm trees is also dependent
on local conditions. The presence of certain functional
groups could also promote the distribution of other
functional groups through positive ecological interac-
tions. Epiphytes and climbers both rely on woody
plants for structural support and substrate, consist-
ent with a close distributional overlap with angio-
sperm trees. A similar overlap is not found with
coniferous trees, as climatic constraints separate

0 5000 10000 15000

A) Temperature seasonality

Epiphytes

Climbers

Ferns

Herbs

Shrubs

Coniferous trees

Angiosperm trees

0 1000 3000 5000 7000

B) Annual precipitation (mm)
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Figure 3. Modelled response of plant functional group dominance and environmental predictors obtained from boosted
regression tree (BRT) models for the whole New World. The lines represent the relative species richness of a functional
group as a function of a given environmental predictor when other predictors in the model are kept constant. Red lines
show the three most important predictors for each functional group based on the BRT results (Table 3), whereas black
is used for the six least important. The most intense shading shows the environmental conditions at which the functional
group reaches highest dominance.
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these functional groups. Decreasing epiphyte richness
at high elevation is linked to treelines, but also to low
temperatures, although the physiological mechanism
is unknown (Kromer et al., 2005). The geographical
pattern found in this study of a near-absence of epi-
phytes outside the tropical regions indicates a similar
elevational delimitation. Climbers achieve structural
support from trees and can invest heavily in their
exceptionally efficient vascular system (Schnitzer,
2005). However, this also makes them vulnerable to
freezing-induced embolisms (Gallagher & Leishman,
2012) and explains the low climber dominance in the
colder areas inhabited by conifers.

CLIMATIC AND NON-CLIMATIC NATURAL DRIVERS OF

GEOGRAPHICAL PATTERNS

The importance of climatic factors for all functional
groups (Table 3) supports hypothesis H1 and shows
the strong influence of climate on plant communities
through water availability (Walter, 1973), consistent
with interactions between climatic predictors
(Table S6). Our results were generally consistent with
predictions from the literature (Table 2) and quanti-
tatively confirm the strong link between plant func-
tional groups and climate. The climatic predictors
explained 24.6–81.6% of all explained variance (sum
of percentage contribution, Table 3), emphasizing the
high importance of climate for large-scale geographi-
cal patterns of plant functional groups.

Trees require larger amounts of carbon for construc-
tion than do smaller plants and are expected to domi-
nate in warmer and wetter environments, with the
opposite being true for smaller plants, such as shrubs
and herbs (Harrison et al., 2010). Angiosperm trees are
dominant in the most favourable environments,
whereas herbs are dominant in areas with higher
temperature seasonality and lower precipitation, and
shrubs are clearly dominant in the driest areas where
high precipitation seasonality increases the risk of
drought events. Conifers are dominant in cold and dry
areas environmentally opposite to angiosperm trees,
consistent with our predictions (Table 2), but are not
strongly linked to any climatic predictor. We also found
the predicted division in climatic preference for epi-
phytes and climbers (Table 2). Both have their
highest relative dominance under tropical conditions.
However, the epiphytes, which require high humidity
(Benzing, 1990), are dominant in wetter areas,
whereas climbers are dominant in drier areas, consist-
ent with their strong ability to extract and contain
water (Schnitzer, 2005). Ferns are dominant in areas of
high annual precipitation (Fig. 3), reflecting high
water dependence and a preference for mesic habitats
(Kato, 1993). A study from Africa, however, has shown
that fern species richness is underestimated for arid

regions (Anthelme, Abdoulkader & Viane, 2011). This
pattern might be similar for the New World if sampling
of ferns was focused on humid areas. Insufficient
sampling could explain why the fern models showed
low performance.

Previous climate change events have resulted in
shifting communities and changing functional compo-
sition (Davis & Shaw, 2001; Cárdenas et al., 2014).
The strong connection to climate suggests that
current and future climate change can severely influ-
ence spatial patterns of plant functional group domi-
nance. Encroachment of woody shrubs and trees into
grasslands has been documented for North American
grasslands (Knapp et al., 2008) and increases in
climbers have been found for tropical forests
(Schnitzer & Bongers, 2011), whereas epiphytes and
trees have been identified as especially prone to
extinction risk (Leão et al., 2014). This illustrates that
plant functional group responses to climate change
are complex and worthy of further investigation.

The topographic predictors elevation and slope are
also strong predictors of some functional groups
(Table 3), consistent with local-scale studies (e.g.
Waide et al., 1999; Moeslund et al., 2013). Both are
positively related to both epiphyte and fern relative
richness, confirming the prediction of high dominance
of both functional groups in humid montane rainfor-
ests (Figs 3, S5b; Table 2) (Benzing, 1990). Global
forest cover is strongly correlated with increasing slope
as a result of anthropogenic land clearing on more
accessible low slope areas (Sandel & Svenning, 2013).
We also found a positive relationship between slope
and both shrubs and coniferous trees, whereas the
relationship was negative for angiosperm trees (Figs 3,
S5b; Table 2). The generally slower growing conifers
only have a competitive advantage over angiosperm
trees in cold or nutrient-poor areas (Bond, 1989),
consistent with a strong connection to temperature
seasonality (Table 3) and clear conifer dominance in
the coldest and highest areas (Figs 3, S5b).

Tree height was included as a proxy for ecological
interactions between trees and other functional
groups. Epiphytes and climbers dominate at increas-
ing tree height (Fig. S5b), consistent with the need of
both groups for trees for support (Benzing, 1990). Tree
height generally ranks low for the functional groups.
Our spatial resolution may be too coarse to determine
the importance of species interactions, which more
probably influence local-scale patterns (McGill, 2010).
Alternatively, tree height may not be representative of
interactions affecting functional group distribution,
despite canopy density having strong local effects
(Oberle, Grace & Chase, 2009). We also expected a
strong link to soil conditions, but only found a strong
effect for ferns, showing that other environmental
factors are more important at this bicontinental scale.
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HUMAN INFLUENCE

Humans have transformed natural ecosystems world-
wide, and future land use changes are likely to esca-
late anthropogenic impacts (Ellis, 2011). HII is
strongly related to ferns with dominance at medium
to high HII (Fig. 3). A positive connection to HII could
be a result of higher sampling in areas closer to cities
and infrastructure (Reddy & Da, 2003). Whether this
effect influences ferns more than other functional
groups is uncertain, but should be explored further.
Increased sampling focused on ferns might also
improve model explanatory power, which is particu-
larly low for this functional group (Table 3). On the
contrary, there is no indication that ferns are particu-
larly poorly sampled. The connection to HII could
simply be caused by ferns and humans occupying
similar conditions, consistent with a strong interac-
tion between sand and HII (Fig. S7). Many ferns are
rapid colonizers and thus tolerant of disturbance,
with many being clearly well adapted and even ben-
efitting from disturbance (Arens & Baracaldo, 1998;
Jenkins & Parker, 2000; Slocum et al., 2004). Global
forest cover has been negatively affected by land
clearing (Hansen et al., 2013) and is a probable cause
of the strong and negative relationship between HII
and coniferous and angiosperm trees. This result
highlights the fact that natural forest ecosystems
have been and still are pressurized by human land
use changes (Butchart et al., 2010). Other functional
groups might benefit from human-mediated dispersal,
disturbance or land use changes (Ellis, Antill & Kreft,
2012). For instance, shrubs are, in some cases, pro-
moted by grazing (Roques, O’Connor & Watkinson,
2001), although the functional group is not strongly
correlated with HII (Table 3). Grazing is difficult to
measure at large scales and is unlikely to be captured
well by HII, explaining the weak connection to shrub
dominance.

Whether plant distributions are controlled by
resources (e.g. light or water) or consumers (grazers
or fire) has been much debated (Hairston, Smith &
Slobodkin, 1960; Bond, 2005). We expected fire to
affect shrub dominance strongly, as this functional
group has been known to be promoted by fires (Knapp
et al., 2008; Papanikolaou et al., 2011). However, the
effect is rather weak (Table 3). Conifers are strongly
and negatively affected by fire, consistent with defor-
estation after fires (Bond, 1989). Fires strongly affect
local plant communities, but the effect is weak com-
pared with the other environmental predictors at our
continental scale. This pattern is consistent with
results from a previous study covering the African
continent (Greve et al., 2011). High-impact fires are,
however, expected to increase in frequency and sever-
ity with future climate change to the extent of gradu-

ally shifting vegetation zones at larger scales
(Bowman et al., 2011; Staver et al., 2011).

Overall, these results show that natural environ-
mental predictors are not the only influential drivers
of functional group dominance at the continental
scale. Human activities also shape large-scale biogeo-
graphical patterns, supporting hypothesis H2. The
responses to disturbance are mostly consistent with
hypothesis H3, showing that disturbance and human
activities can affect broad-scale vegetation patterns
via interactions with plant functional traits.

METHODOLOGICAL CONSIDERATIONS

Increased sampling near roads, cities and rivers can
create strong spatial sampling bias (Schulman,
Toivonen & Ruokolainen, 2007) and can severely
affect species richness estimates (Gotelli & Colwell,
2001; Engemann et al., 2015). Despite the use of the
Margalef correction and inclusion of sampling inten-
sity in our models, the positive correlation to HII by
epiphytes and ferns might be caused by sampling
bias, although neither was the least sampled func-
tional group (Supporting Information, Fig. S8). Conif-
erous trees were the least sampled functional group
in our dataset and also had the strongest correlation
to sampling (Table 4). Most functional groups only
varied slightly with sampling intensity, whereas
herbs and angiosperm trees showed more variation
(Supporting Information, Fig. S9), and it is possible
that the functional groups are differently sampled.
The effect of spatial sampling bias could be further
explored by investigating distances to roads, cities
and herbaria for each functional group. The strong
effect of sampling emphasizes the underlying issue of
sampling bias in unstandardized datasets compiled
from multiple sources (Martin, Blossey & Ellis, 2012;
Amano & Sutherland, 2013). A promising new
approach is stacking of species distribution models
(Dubuis et al., 2011) which are less affected by sam-
pling (Loiselle et al., 2008). Such maps are increas-
ingly being made available from diversity databases
(e.g. BIEN 2013, http://bien.nceas.ucsb.edu/bien/;
Map of Life, www.mappinglife.org).

Spatial autocorrelation can influence the impor-
tance of parameter estimates (Kissling & Carl, 2008).
We used SAR as a supplement to BRT models, as
these do not entirely account for spatial dependence
in model residuals. The predictive ability of BRT
models and validity of cross-validation values could
be improved by specifically handling spatial autocor-
relation. Although sampling bias and spatial autocor-
relation could influence our results (Kissling & Carl,
2008; Michalcová et al., 2011), both modelling
approaches concurred on the most important drivers
of functional group dominance (Tables 3, 4).
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FUTURE PERSPECTIVES

The definition of plant functional types is an impor-
tant aspect of dynamic modelling of vegetation
responses (DGVMs) to climate change (Harrison
et al., 2010). We have quantitatively shown that plant
functional group dominance shifts along natural cli-
matic gradients across two continents. The use of
functional groups ensures that our results are glob-
ally comparable (Duckworth et al., 2000). The congru-
ence between our results and predicted relationships
shows that our dataset and analytical approach are
robust. The results can be used complementarily to
the functional types employed in DGVMs (see, for
example, Scheiter & Higgins, 2009). In addition, we
also showed that these large-scale patterns are influ-
enced by anthropogenic disturbance. Synergistic
effects of multiple pressures could cause greater
effects than observed for each predictor alone (Brook,
Sodhi & Bradshaw, 2008), and should be included in
dynamic models aimed at predicting vegetation
response. Different drivers work at different scales
(McGill, 2010) and future work should focus on
testing predictor scale dependence for functional
groups. However, we found that strong sampling
effects and increasing resolution to a finer grain
would increase the effect of sampling bias as spatial
coverage decreases.

All functional groups showed clear and strong con-
nections to climate previously not confirmed statisti-
cally for a dataset covering the whole New World.
Natural environmental predictors were not the only
influential drivers of functional group dominance.
Disturbance and human activities also affected domi-
nance of the functional groups through functional
responses. Future climate change in combination
with increased anthropogenic pressures has the
potential to shift the geographical distribution of
functional vegetation groups and to affect ecosystem
function through changes in plant community func-
tional composition.
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SUPPORTING INFORMATION

Additional Supporting Information may be found in the online version of this article at the publisher’s website:

Figure S1. Geographical distribution of species richness and occurrences for 100 × 100-km2 grid cells. Maps
show, for each grid cell, raw species richness (A), total occurrences (B) and occurrences for cells with at least
50 occurrences (C). Species richness was calculated as the total number of species within a grid cell and
recalculated with the Margalef correction. Projection: Lambert azimuthal equal area.
Figure S2. Correlograms for residuals from ordinary least-squares (OLS) and simultaneous autoregressive
(SAR) models. The models were fitted for the relative species richness and frequency for each plant functional
group and the full set of ten environmental predictors. The spatial weights matrix of all SAR models was
calculated with the smallest neighbourhood distance that ensured each observation had at least one neighbour.
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The y-axis shows Moran’s I value, as a measure of autocorrelation, against the distance classes on the x-axis
for comparison of the spatial autocorrelation pattern with increasing distance.
Figure S3. Geographical distribution of functional group frequency. All maps show the proportion of individual
functional group frequency to the total frequency. A, Ferns. B, Epiphytes. C, Climbers. D, Herbs. E, Shrubs. F,
Coniferous trees. G, Angiosperm trees. The maps illustrate the unique spatial patterns of frequency for the
individual functional groups. Frequency was calculated as the number of observations of a given functional
group within a 100 × 100-km2 grid cell. Cells with < 50 observations (Fig. S1C) were excluded. Grey shows cells
without any observations. Projection: Lambert azimuthal equal area.
Figure S4. Modelled response of plant functional group dominance and environmental predictors obtained from
boosted regression tree (BRT) models for the whole New World. The lines represent the relative frequency of
a functional group as a function of a given environmental predictor when other predictors in the model are kept
constant. Red lines show the four most important predictors for each functional group based on the BRT results
(Table 3), whereas black is used for the six least important. The most intense shading shows the environmental
conditions at which the functional group reaches highest dominance.
Figure S5a. Response curves of plant functional group dominance and environmental predictors obtained from
boosted regression tree (BRT) models for the whole New World. The curves represent the relative frequency of
a functional group as a function of a given environmental predictor when other predictors in the model are kept
constant. For comparability, the y-axis of all curves has been scaled to the interval 0–1. Therefore, the curves
show trends, not actual values.
Figure S5b. Response curves of plant functional group dominance and environmental predictors obtained from
boosted regression tree (BRT) models for the whole New World. The curves represent the relative species
richness of a functional group as a function of a given environmental predictor when other predictors in the
model are kept constant. For comparability, the y-axis of all curves has been scaled to the interval 0–1.
Therefore, the curves show trends, not actual values.
Figure S6a. Response curves of plant functional groups and environmental predictors obtained from model-
averaged simultaneous autoregressive (SAR) models for the whole New World. The curves were fitted from
parameter estimates from the SAR models and represent the relative frequency of a functional group as a
function of a given environmental predictor when other predictors in the model are also considered.
Figure S6b. Response curves of plant functional groups and environmental predictors obtained from
model-averaged simultaneous autoregressive (SAR) models for the whole New World. The curves were fitted
from parameter estimates from the SAR models and represent the relative species richness of a functional
group as a function of a given environmental predictor when other predictors in the model are also
considered.
Figure S7. Effect of interaction between sand content of soil and human influence index (HII) for relative fern
species richness.
Figure S8. Histograms showing the number of species (A) and the number of occurrences (B) for each functional
group.
Figure S9. Loess regression lines between sampling and the proportion of individual functional group
frequency to the total frequency (A) and the proportion of individual functional group species richness to the
total species richness (B).
Table S1. Correlations among the environmental predictor variables. The correlations were calculated as
pairwise Pearson product-moment coefficients. Abbreviations: AMT, annual mean temperature; TSEAS, tem-
perature seasonality; AP, annual precipitation; PSEAS, precipitation seasonality; AET, actual evapotranspira-
tion; Topo, topographical heterogeneity; HII, human influence index; TreeH., tree height; Sampling, total
number of observations.
Table S2. Model sets. ‘X’ marks which variables were included in a given model set. Model set 2 showed the
best performance measured as both R2 and Akaike information criterion (AIC) values across the functional
groups, and was chosen for all subsequent analyses. Consensus shows the number of times a model was selected
as the best fitting for a functional group for both frequency and species richness. Abbreviations: AMT, annual
mean temperature; TSEAS, temperature seasonality; AP, annual precipitation; PSEAS, precipitation season-
ality; AET, actual evapotranspiration; HII, human influence index; TreeH., tree height.
Table S3. Percentage contribution of each of the predictor variables for plant functional group frequency. Bold
indicates the three most important variables for each functional group in the boosted regression tree (BRT)
model. Abbreviations as for Table 3.
Table S4. Correlation of functional group distribution. Correlation was calculated as pairwise Pearson product-
moment coefficients.
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Table S5. Relationship between the distribution of plant functional group frequency and environmental
predictors. Functional group frequency is relative and proportional to the total number of observations.
Parameter coefficients were all standardized and calculated with the simultaneous autoregressive (SAR) model
averaging procedure. Numbers in parentheses show the Akaike information criterion (AIC) weight for a given
parameter. Numbers in bold indicate the three most important predictor variables for each growth form (those
with the highest coefficient values). Model performance was found for the global model. Abbreviations as for
Table 3.
Table S6. Interactions between environmental predictors from the boosted regression tree (BRT) models.
Interactions between predictor variables with the highest median contribution to BRT models. Numbers
indicate the relative degree of departure from a purely additive effect. A value of zero indicates that no
interaction was present, and values above zero indicate an increasing effect of the interaction compared with
a purely additive effect. Abbreviations: TSEAS, temperature seasonality; AP, annual precipitation; PSEAS,
precipitation seasonality; Elev, elevation; HII, human influence index; TreeH., tree height; Samp, sampling.
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