2,844 research outputs found

    Deep flaws in weldments of aluminum and titanium

    Get PDF
    Surface flawed specimens of 2219-T87 and 6Al-4V STA titanium weldments were tested to determine static failure modes, failure strength, and fatigue flaw growth characteristics. Thicknesses selected for this study were purposely set at values where, for most test conditions, abrupt instability of the flaw at fracture would not be expected. Static tests for the aluminum weldments were performed at room, LN2 and LH2 temperatures. Titanium static tests for tests were performed at room and LH2 temperatures. Results of the static tests were used to plot curves relating initial flaw size to leakage- or failure-stresses (i.e. "failure" locus curves). Cyclic tests, for both materials, were then performed at room temperature, using initial flaws only slightly below the previously established failure locus for typical proof stress levels. Cyclic testing was performed on pairs of specimens, one with and one without a simulated proof test cycle. Comparisons were made then to determine the value and effect of proof testing as affected by the various variables of proof and operating stress, flaw shape, material thickness, and alloy

    Buckling without bending: a new paradigm in morphogenesis

    Full text link
    A curious feature of organ and organoid morphogenesis is that in certain cases, spatial oscillations in the thickness of the growing "film" are out-of-phase with the deformation of the slower-growing "substrate," while in other cases, the oscillations are in-phase. The former cannot be explained by elastic bilayer instability, and contradict the notion that there is a universal mechanism by which brains, intestines, teeth, and other organs develop surface wrinkles and folds. Inspired by the microstructure of the embryonic cerebellum, we develop a new model of 2d morphogenesis in which system-spanning elastic fibers endow the organ with a preferred radius, while a separate fiber network resides in the otherwise fluid-like film at the outer edge of the organ and resists thickness gradients thereof. The tendency of the film to uniformly thicken or thin is described via a "growth potential". Several features of cerebellum, +blebbistatin organoid, and retinal fovea morphogenesis, including out-of-phase behavior and a film thickness amplitude that is comparable to the radius amplitude, are readily explained by our simple analytical model, as may be an observed scale-invariance in the number of folds in the cerebellum. We also study a nonlinear variant of the model, propose further biological and bio-inspired applications, and address how our model is and is not unique to the developing nervous system.Comment: version accepted by Physical Review

    EXPERIMENTALLY MEASURED RADIATIVE LIFETIMES AND OSCILLATOR STRENGTHS IN NEUTRAL VANADIUM

    No full text
    We report a new study of the V i atom using a combination of time-resolved laser-induced fluorescence and Fourier transform spectroscopy that contains newly measured radiative lifetimes for 25 levels between 24,648 cm−1 and 37,518 cm−1 and oscillator strengths for 208 lines between 3040 and 20000 Å from 39 upper energy levels. Thirteen of these oscillator strengths have not been reported previously. This work was conducted independently of the recent studies of neutral vanadium lifetimes and oscillator strengths carried out by Den Hartog et al. and Lawler et al., and thus serves as a means to verify those measurements. Where our data overlap with their data, we generally find extremely good agreement in both level lifetimes and oscillator strengths. However, we also find evidence that Lawler et al. have systematically underestimated oscillator strengths for lines in the region of 9000 ± 100 Å. We suggest a correction of 0.18 ± 0.03 dex for these values to bring them into agreement with our results and those of Whaling et al. We also report new measurements of hyperfine structure splitting factors for three odd levels of V i lying between 24,700 and 28,400 cm−1

    Control of plant stem cell function by conserved interacting transcriptional regulators

    Get PDF
    Plant stem cells in the shoot apical meristem (SAM) and root apical meristem are necessary for postembryonic development of aboveground tissues and roots, respectively, while secondary vascular stem cells sustain vascular development. WUSCHEL (WUS), a homeodomain transcription factor expressed in the rib meristem of the Arabidopsis SAM, is a key regulatory factor controlling SAM stem cell populations, and is thought to establish the shoot stem cell niche through a feedback circuit involving the CLAVATA3 (CLV3) peptide signalling pathway. WUSCHEL-RELATED HOMEOBOX 5 (WOX5), which is specifically expressed in the root quiescent centre, defines quiescent centre identity and functions interchangeably with WUS in the control of shoot and root stem cell niches. WOX4, expressed in Arabidopsis procambial cells, defines the vascular stem cell niche. WUS/WOX family proteins are evolutionarily and functionally conserved throughout the plant kingdom and emerge as key actors in the specification and maintenance of stem cells within all meristems. However, the nature of the genetic regime in stem cell niches that centre on WOX gene function has been elusive, and molecular links underlying conserved WUS/WOX function in stem cell niches remain unknown. Here we demonstrate that the Arabidopsis HAIRY MERISTEM (HAM) family of transcription regulators act as conserved interacting cofactors with WUS/WOX proteins. HAM and WUS share common targets in vivo and their physical interaction is important in driving downstream transcriptional programs and in promoting shoot stem cell proliferation. Differences in the overlapping expression patterns of WOX and HAM family members underlie the formation of diverse stem cell niche locations, and the HAM family is essential for all of these stem cell niches. These findings establish a new framework for the control of stem cell production during plant development

    The Sweat Lodge Ceremony as Experienced by Nurses A Hermeneutic Phenomenological Study

    Get PDF
    Nursing must reconnect with its roots found in the teachings of Florence Nightingale and be open to ancient indigenous wisdom, focusing on caring, healing and being present. To practice as culturally competent healers, nurses must grow in self awareness and an ability to understand cultural and spiritual practices, as well as communicate with and show respect to people from all walks of life. A Hermeneutic Phenomenological study was done by interviewing three participants to explore what it was like for Master in Arts nursing students participating in an Augsburg College Department of Nursing Immersion to experience a Sweat Lodge Ceremony; with data being analyzed in the context of nurse as healer. Seven major themes were found in analysis of the data: 1) Importance of being open, 2) Experienced elements of a therapeutic relationship/healing environment, 3) Sense of being connected,4) Healing experience, 5) Gained personal and cultural insights and growth, 6) Application to nursing practice, 7) Sweat Lodge Ceremony was a meaningful experience on a deeply personal level. Jean Watson\u27s Human Caring Theory served to guide, guard, connect and ground this study

    Effect of thermal profile on cyclic flaw growth in aluminum

    Get PDF
    Surface flawed and single edge notch tension specimens of 2219-T851 and -T87 aluminum were tested to determine static fracture characteristics and base line (constant amplitude, constant temperature) cyclic flaw growth behavior. Subsequent testing was then conducted in which flawed specimens were subjected to a thermal profile in which the applied stress was varied simultaneously with the temperature. The profile used represents a simplified space shuttle orbiter load/temperature flight cycle. Test temperatures included the range from 144K (-200 F) up to 450K (350 F). The measured flaw growth rates obtained from the thermal profile tests were then compared with rates predicted by assuming linear cumulative damage of base line rates

    Can hibernators sense and evade fires? Olfactory acuity and locomotor performance during deep torpor.

    Get PDF
    Increased habitat fragmentation, global warming and other human activities have caused a rise in the frequency of wildfires worldwide. To reduce the risks of uncontrollable fires, prescribed burns are generally conducted during the colder months of the year, a time when in many mammals torpor is expressed regularly. Torpor is crucial for energy conservation, but the low body temperatures (T b) are associated with a decreased responsiveness and torpid animals might therefore face an increased mortality risk during fires. We tested whether hibernators in deep torpor (a) can respond to the smell of smoke and (b) can climb to avoid fires at T bs below normothermic levels. Our data show that torpid eastern pygmy-possums (Cercartetus nanus) are able to detect smoke and also can climb. All males aroused from torpor when the smoke stimulus was presented at an ambient temperature (T a) of 15 °C (T b ∼18 °C), whereas females only raised their heads. The responses were less pronounced at T a 10 °C. The first coordinated movement of possums along a branch was observed at a mean T b of 15.6 °C, and animals were even able to climb their prehensile tail when they reached a mean T b of 24.4 °C. Our study shows that hibernators can sense smoke and move at low T b. However, our data also illustrate that at T b ≤13 °C, C. nanus show decreased responsiveness and locomotor performance and highlight that prescribed burns during winter should be avoided on very cold days to allow torpid animals enough time to respond
    corecore